
RAPID reference manual
BaseWare 
RAPID reference part 2, Functions and data types A-Z
 
RobotWare-OS 4.0





RAPID reference part 2, Functions and data types A-Z

Table of contents

Functions A-Z

Data types A-Z

Index

RAPID reference manual
3HAC 7774-1
Revision B

BaseWare
RAPID reference part 2, Functions and data types A-Z
 
RobotWare-OS 4.0



RAPID reference part 2, Functions and data types A-Z

 The information in this manual is subject to change without notice and should not be construed as a commitment 
by ABB. ABB assumes no responsibility for any errors that may appear in this manual.

Except as may be expressly stated anywhere in this manual, nothing herein shall be construed as any kind of guar-
antee or warranty by ABB for losses, damages to persons or property, fitness for a specific purpose or the like.

This manual and parts thereof must not be reproduced or copied without ABB's written permission, and contents 
thereof must not be imparted to a third party nor be used for any unauthorized purpose. Contravention will be pros-
ecuted.

Additional copies of this manual may be obtained from ABB at its then current charge. 

© 2003 ABB All rights reserved.

ABB Automation Technology Products AB
Robotics

SE-721 68 Västerås
Sweden



Contents
  Abs - Gets the absolute value ..................................................................................................... 1
  ACos - Calculates the arc cosine value ...................................................................................... 3
  AOutput - Reads the value of an analog output signal ............................................................ 5
  ASin - Calculates the arc sine value........................................................................................... 7
  ATan - Calculates the arc tangent value.................................................................................... 9
  ATan2 - Calculates the arc tangent2 value.............................................................................. 11
  ByteToStr - Converts a byte to a string data .......................................................................... 13
  CalcJointT - Calculates joint angles from robtarget ............................................................. 17
  CalcRobT - Calculates robtarget from jointtarget ................................................................ 21
  CalcRotAxisFrame - Calculate a rotational axis frame......................................................... 25
  CDate - Reads the current date as a string ............................................................................. 29
  CJointT - Reads the current joint angles ................................................................................ 31
  ClkRead - Reads a clock used for timing ................................................................................ 33
  Cos - Calculates the cosine value ............................................................................................. 35
  CPos - Reads the current position (pos) data ......................................................................... 37
  CRobT - Reads the current position (robtarget) data ........................................................... 41
  CSpeedOverride - Reads the current override speed ............................................................ 43
  CTime - Reads the current time as a string ............................................................................ 45
  CTool - Reads the current tool data......................................................................................... 47
  CWObj - Reads the current work object data ....................................................................... 49
  DefAccFrame - Define an accurate frame .............................................................................. 51
  DefDFrame - Define a displacement frame ............................................................................ 55
  DefFrame - Define a frame....................................................................................................... 59
  Dim - Obtains the size of an array........................................................................................... 63
  Distance - Distance between two points .................................................................................. 65
  DotProd - Dot product of two pos vectors............................................................................... 67
  DOutput - Reads the value of a digital output signal............................................................. 69
  EulerZYX - Gets euler angles from orient.............................................................................. 71
  Exp - Calculates the exponential value.................................................................................... 73
  FileTime - Retrieve time information about a file.................................................................. 75
  GetNextMechUnit - Get name of mechanical units ............................................................... 79
  GetNextSym - Get next matching symbol............................................................................... 81
  GetTaskName - Gets the name of current task ...................................................................... 83
  GetTime - Reads the current time as a numeric value .......................................................... 85
  GOutput - Reads the value of a group of digital output signals ........................................... 87
  IsMechUnitActive - Is mechanical unit active ........................................................................ 89
  IsPers - Is persistent .................................................................................................................. 91
  IsSysId - Test system identity ................................................................................................... 93
RAPID reference part 2, Functions and data types A-Z I



Contents
  IsVar - Is variable...................................................................................................................... 95
  MaxRobSpeed - Maximum robot speed.................................................................................. 97
  MirPos - Mirroring of a position ............................................................................................. 99
  ModTime - Get time of load for a loaded module ................................................................ 101
  NOrient - Normalise orientation............................................................................................ 103
  NumToStr - Converts numeric value to string ..................................................................... 105
  Offs - Displaces a robot position ............................................................................................ 107
  OpMode - Read the operating mode ..................................................................................... 109
  OrientZYX - Builds an orient from euler angles...................................................................111
  ORobT - Removes a program displacement from a position.............................................. 113
  PoseInv - Inverts the pose....................................................................................................... 115
  PoseMult - Multiplies pose data............................................................................................. 117
  PoseVect - Applies a transformation to a vector .................................................................. 119
  Pow - Calculates the power of a value................................................................................... 121
  Present - Tests if an optional parameter is used ................................................................... 123
  ReadBin - Reads a byte from a file or serial channel........................................................... 125
  ReadMotor - Reads the current motor angles ...................................................................... 129
  ReadNum - Reads a number from a file or serial channel .................................................. 131
  ReadStr - Reads a string from a file or serial channel......................................................... 135
  ReadStrBin - Reads a string from a binary serial channel or file ...................................... 141
  RelTool - Make a displacement relative to the tool .............................................................. 145
  RobOS - Check if execution is on RC or VC ........................................................................ 147
  Round - Round is a numeric value ........................................................................................ 149
  RunMode - Read the running mode ...................................................................................... 151
  Sin - Calculates the sine value ................................................................................................ 153
  Sqrt - Calculates the square root value ................................................................................. 155
  StrFind - Searches for a character in a string ...................................................................... 157
  StrLen - Gets the string length............................................................................................... 159
  StrMap - Maps a string........................................................................................................... 161
  StrMatch - Search for pattern in string ................................................................................ 163
  StrMemb - Checks if a character belongs to a set ................................................................ 165
  StrOrder - Checks if strings are ordered .............................................................................. 167
  StrPart - Finds a part of a string............................................................................................ 169
  StrToByte - Converts a string to a byte data ........................................................................ 171
  StrToVal - Converts a string to a value ................................................................................. 175
  Tan - Calculates the tangent value......................................................................................... 177
  TestAndSet - Test variable and set if unset ........................................................................... 179
  TestDI - Tests if a digital input is set...................................................................................... 183
RAPID reference part 2, Functions and data types A-Z II



Contents
  TestSignRead - Read test signal value ................................................................................... 185
  Trunc - Truncates a numeric value........................................................................................ 189
  ValToStr - Converts a value to a string ................................................................................. 191
  VectMagn - Magnitude of a pos vector.................................................................................. 193
  aiotrigg - Analog I/O trigger condition ................................................................................. 195
  bool - Logical values................................................................................................................ 197
  byte - Decimal values 0 - 255 .................................................................................................. 199
  clock - Time measurement...................................................................................................... 201
  confdata - Robot configuration data ..................................................................................... 203
  dionum - Digital values 0 - 1................................................................................................... 211
  errdomain - Error domain ..................................................................................................... 213
  errnum - Error number.......................................................................................................... 215
  errtype - Error type................................................................................................................. 221
  extjoint - Position of external joints....................................................................................... 223
  intnum - Interrupt identity..................................................................................................... 225
  iodev - Serial channels and files ............................................................................................. 227
  jointtarget - Joint position data ............................................................................................. 229
  loaddata - Load data ............................................................................................................... 231
  loadsession - Program load session........................................................................................ 237
  mecunit - Mechanical unit ...................................................................................................... 239
  motsetdata - Motion settings data.......................................................................................... 241
  num - Numeric values (registers)........................................................................................... 247
  o_jointtarget - Original joint position data........................................................................... 249
  o_robtarget - Original position data...................................................................................... 251
  opnum - Comparison operator .............................................................................................. 255
  orient - Orientation ................................................................................................................. 257
  pos - Positions (only X, Y and Z) ........................................................................................... 263
  pose - Coordinate transformations ........................................................................................ 265
  progdisp - Program displacement.......................................................................................... 267
  robjoint - Joint position of robot axes ................................................................................... 269
  robtarget - Position data ......................................................................................................... 271
  shapedata - World zone shape data ....................................................................................... 275
  signalxx - Digital and analog signals...................................................................................... 277
  speeddata - Speed data............................................................................................................ 279
  stoppointdata - Stop point data.............................................................................................. 283
  string - Strings ......................................................................................................................... 291
  symnum - Symbolic number .................................................................................................. 293
  System Data ............................................................................................................................. 295
RAPID reference part 2, Functions and data types A-Z III



Contents
  taskid - Task identification ..................................................................................................... 297
  testsignal - Test signal ............................................................................................................. 299
  tooldata - Tool data ................................................................................................................. 301
  tpnum - Teach pendant window number .............................................................................. 307
  triggdata - Positioning events - trigg ..................................................................................... 309
  trapdata - Interrupt data for current TRAP........................................................................ 311
  tunetype - Servo tune type...................................................................................................... 313
  wobjdata - Work object data.................................................................................................. 315
  wzstationary - Stationary world zone data ........................................................................... 319
  wztemporary - Temporary world zone data ......................................................................... 321
  zonedata - Zone data............................................................................................................... 323
RAPID reference part 2, Functions and data types A-Z IV



 Abs
Function  
Abs - Gets the absolute value
Abs is used to get the absolute value, i.e. a positive value of numeric data.

Example

reg1 := Abs(reg2);

Reg1 is assigned the absolute value of reg2. 

Return value Data type: num

The absolute value, i.e. a positive numeric value.

e.g. Input value Returned value
3 3
-3 3
-2.53 2.53

Arguments

Abs  (Input)

Input Data type: num

The input value.

Example

TPReadNum no_of_parts, "How many parts should be produced? ";
no_of_parts := Abs(no_of_parts);

The operator is asked to input the number of parts to be produced. To ensure that 
the value is greater than zero, the value given by the operator is made positive.

Syntax

Abs ’(’
[ Input ’:=’ ] < expression (IN) of num > ’)’

A function with a return value of the data type num.
RAPID reference part 2, Functions and data types A-Z 1



Abs  
 Function
Related information

Described in:
Mathematical instructions and functions RAPID Summary - Mathematics
2 RAPID reference part 2, Functions and data types A-Z



 ACos
Function  
ACos - Calculates the arc cosine value
ACos (Arc Cosine) is used to calculate the arc cosine value.

Example

VAR num angle;
VAR num value;
.
.
angle := ACos(value);

Return value

ACos Data type: num

The arc cosine value, expressed in degrees, range [0, 180].

Arguments

ACos  (Value)

Value Data type: num

The argument value, range [-1, 1].

Syntax

Acos’(’
[Value ’:=’] <expression (IN) of num>
’)’

A function with a return value of the data type num.

Related information

Described in:
Mathematical instructions and functions RAPID Summary - Mathematics
RAPID reference part 2, Functions and data types A-Z 3



ACos  
 Function
4 RAPID reference part 2, Functions and data types A-Z



 AOutput
Function  
AOutput - Reads the value of an analog output signal
AOutput is used to read the current value of an analog output signal.

Example

IF AOutput(ao4) > 5 THEN ... 

If the current value of the signal ao4 is greater than 5, then ...

Return valueData type: num

The current value of the signal.

The current value is scaled (in accordance with the system parameters) before it is read 
by the RAPID program. See Figure 1.

Figure 1  Diagram of how analog signal values are scaled.

Arguments

AOutput (Signal)

Signal Data type: signalao

The name of the analog output to be read.

Logical value in the 
program

Physical value of the 
output signal (V, mA, etc.)

MAX SIGNAL

MIN SIGNAL

MAX PROGRAM

MIN PROGRAM
RAPID reference part 2, Functions and data types A-Z 5



AOutput  
 Function
Syntax

AOutput ’(’
[ Signal ’:=’ ] < variable (VAR) of signalao > ’)’

A function with a return value of data type num.

Related information

Described in:
Input/Output instructions RAPID Summary - 

Input and Output Signals
Input/Output functionality in general Motion and I/O Principles -
I/O Principles
Configuration of I/O User’s Guide - System Parameters
6 RAPID reference part 2, Functions and data types A-Z



 ASin
Function  
ASin - Calculates the arc sine value
ASin (Arc Sine) is used to calculate the arc sine value.

Example

VAR num angle;
VAR num value;
.
.
angle := ASin(value);

Return value Data type: num

The arc sine value, expressed in degrees, range [-90, 90].

Arguments

ASin  (Value)

Value Data type: num

The argument value, range [-1, 1].

Syntax

ASin’(’
[Value ’:=’] <expression (IN) of num>
’)’

A function with a return value of the data type num.

Related information

Described in:
Mathematical instructions and functions RAPID Summary - Mathematics
RAPID reference part 2, Functions and data types A-Z 7



ASin  
 Function
8 RAPID reference part 2, Functions and data types A-Z



 ATan
Function  
ATan - Calculates the arc tangent value
ATan (Arc Tangent) is used to calculate the arc tangent value.

Example

VAR num angle;
VAR num value;
.
.
angle := ATan(value);

Return value Data type: num

The arc tangent value, expressed in degrees, range [-90, 90].

Arguments

ATan  (Value)

Value Data type: num

The argument value.

Syntax

ATan’(’
[Value ’:=’] <expression (IN) of num>
’)’

A function with a return value of the data type num.

Related information

Described in:
Mathematical instructions and functions RAPID Summary - Mathematics
Arc tangent with a return value in the Functions - ATan2
range [-180, 180]
RAPID reference part 2, Functions and data types A-Z 9



ATan  
 Function
10 RAPID reference part 2, Functions and data types A-Z



 ATan2
Function  
ATan2 - Calculates the arc tangent2 value
ATan2 (Arc Tangent2) is used to calculate the arc tangent2 value.

Example

VAR num angle;
VAR num x_value;
VAR num y_value;
.
.
angle := ATan2(y_value, x_value);

Return value Data type: num

The arc tangent value, expressed in degrees, range [-180, 180]. 

The value will be equal to ATan(y/x), but in the range [-180, 180], since the function 
uses the sign of both arguments to determine the quadrant of the return value.

Arguments

ATan2  (Y  X)

Y Data type: num

The numerator argument value.

X Data type: num

The denominator argument value.

Syntax

ATan2’(’
[Y ’:=’] <expression (IN) of num> ’,’
[X ’:=’] <expression (IN) of num>
’)’

A function with a return value of the data type num.
RAPID reference part 2, Functions and data types A-Z 11



Atan2  
 Function
Related information

Described in:
Mathematical instructions and functions RAPID Summary - Mathematics
Arc tangent with only one argument Functions - ATan
12 RAPID reference part 2, Functions and data types A-Z



 ByteToStr
Function  
ByteToStr - Converts a byte to a string data
ByteToStr (Byte To String) is used to convert a byte into a string data with a defined 
byte data format.

Example

VAR string con_data_buffer{5};
VAR byte data1 := 122;

con_data_buffer{1} := ByteToStr(data1);

The content of the array component con_data_buffer{1} will be "122" after the 
ByteToStr ... function.

con_data_buffer{2} := ByteToStr(data1\Hex);

The content of the array component con_data_buffer{2} will be "7A" after the 
ByteToStr ... function.

con_data_buffer{3} := ByteToStr(data1\Okt);

The content of the array component con_data_buffer{3} will be "172" after the 
ByteToStr ... function.

con_data_buffer{4} := ByteToStr(data1\Bin);

The content of the array component con_data_buffer{4} will be "01111010"after 
the ByteToStr ... function.

con_data_buffer{5} := ByteToStr(data1\Char);

The content of the array component con_data_buffer{5} will be "z" after the 
ByteToStr ... function.
RAPID reference part 2, Functions and data types A-Z 13



ByteToStr  
 Function
Return value 

ByteToStr Data type: string

The result of the conversion operation with the following format:

Format: Characters: String length: Range:
Dec .....: ’0’ - ’9’ 1-3 "0" - "255"
Hex .....: ’0’ - ’9’, ’A’ -’F’ 2 "00" - "FF"
Okt ......: ’0’ - ’7’ 3 "000" - "377"
Bin ......: ’0’ - ’1’ 8 "00000000" - "11111111"
Char ....: Any ASCII char (*) 1 One ASCII char

(*) If non-writable ASCII char, the return format will be RAPID character code
format (e.g. “\07” for BEL control character).

Arguments

ByteToStr  (BitData [\Hex] | [\Okt] | [\Bin] | [\Char])

BitData Data type: byte

The bit data to be converted. 

If the optional switch argument is omitted, the data will be converted in decimal (Dec) 
format.

[\Hex] (Hexadecimal) Data type: switch

The data will be converted in hexadecimal format.

[\Okt] (Octal) Data type: switch

The data will be converted in octal format.

[\Bin] (Binary) Data type: switch

The data will be converted in binary format.

[\Char] (Character) Data type: switch

The data will be converted in ASCII character format.
14 RAPID reference part 2, Functions and data types A-Z



 Pow
Function  
Limitations

The range for a data type byte is 0 to 255 decimal.

Syntax

ByteToStr’(’
[BitData ’:=’] <expression (IN) of byte>
[’\’ Hex ] | [’\’ Okt] | [’\’ Bin] | [’\’ Char]
’)’ ’;’

A function with a return value of the data type string.

Related information

Described in:
Convert a string to a byte data Instructions - StrToByte
Other bit (byte) functions RAPID Summary - Bit Functions
Other string functions RAPID Summary - String Functions
RAPID reference part 2, Functions and data types A-Z 15



Pow  
 Function
16 RAPID reference part 2, Functions and data types A-Z



 CalcJointT
Function  
CalcJointT - Calculates joint angles from robtarget
CalcJointT (Calculate Joint Target) is used to calculate joint angles of the robot axes 
and external axes from a specified robtarget data. 

The input robtarget data should be specified in the same coordinate system as specified 
in argument for Tool, WObj and at execution time active program displacement 
(ProgDisp) and external axes offset (EOffs).
The returned jointtarget data is expressed in the calibration coordinate system.

Example

VAR jointtarget jointpos1;
CONST robtarget p1 := [...];

jointpos1 := CalcJointT(p1, tool1 \WObj:=wobj1);

The jointtarget value corresponding to the robtarget value p1 is stored in 
jointpos1. The tool tool1 and work object wobj1 are used for calculating the joint 
angles jointpos1.

Return value Data type: jointtarget

The angles in degrees for the axes of the robot on the arm side.

The values for the external axes, in mm for linear axes, in degrees for rotational axes.

The returned values are always related to the calibration position.

Arguments

CalcJointT ( Rob_target Tool [\WObj] )

Rob_target Data type: robtarget

The position of the robot and external axes in the outermost coordinate system, 
related to the specified tool and work object and at execution time active 
program displacement (ProgDisp) and/or external axes offset (EOffs).

Tool Data type: tooldata

The tool used for calculation of the robot joint angles.
RAPID reference part 2, Functions and data types A-Z 17



CalcJointT  
 Function
[\WObj] (Work Object) Data type: wobjdata

The work object (coordinate system) to which the robot position is related.

If this argument is omitted the work object wobj0 is used.
This argument must be specified when using stationary tool, coordinated external 
axes, or conveyor

Program execution

The returned jointtarget is calculated from the input robtarget.
To calculate the robot joint angles, the specified Tool, WObj (including coordinated 
user frame) and the ProgDisp active at execution time, are taken into consideration.
To calculate the external axis position at the execution time, active EOffs is taken into 
consideration.

The calculation always selects the robot configuration according to the specified con-
figuration data in the input robtarget data. Instructions ConfL and ConfJ do not affect 
this calculation principle. When wrist singularity is used, robot axis 4 will be set to 0 
degrees.

If there is any active program displacement (ProgDisp) and/or external axis offset 
(EOffs) at the time the robtarget is stored, then the same program displacement and/or 
external axis offset must be active when CalcJointT is executed.

Error handling

If at least one axis is outside the working area or the limits are exeeded for at least one 
coupled joint, the system variable ERRNO is set to ERR_ROBLIMIT and the execu-
tion continues in the error handler.

The error handler can then deal with the situation.

Syntax

CalcJointT’(’
[Rob_target ’:=’] <expression (IN) of robtarget> ‘,’
[Tool ’:=’ ] <persistent (PERS) of tooldata>
[’\’WObj ’:=’ <persistent (PERS) of wobjdata>] ’)’

A function with a return value of the data type jointtarget.
18 RAPID reference part 2, Functions and data types A-Z



 CalcJointT
Function  
Related information

Described in:
Calculate robtarget from jointtarget Functions - CalcRobT
Definition of position Data Types - robtarget
Definition of joint position Data Types - jointtarget
Definition of tools Data Types- tooldata
Definition of work objects Data Types - wobjdata
Coordinate systems Motion and I/O Principles - Coordi-
nate Systems
Program displacement coordinate system Instructions - PDispOn
External axis offset coordinate system Instructions - EOffsOn
RAPID reference part 2, Functions and data types A-Z 19



CalcJointT  
 Function
20 RAPID reference part 2, Functions and data types A-Z



 CalcRobT
Function  
CalcRobT - Calculates robtarget from jointtarget
CalcRobT (Calculate Robot Target) is used to calculate a robtarget data from a given 
jointtarget data.

This function returns a robtarget value with position (x, y, z), orientation (q1 ... q4), 
robot axes configuration and external axes position.

The input jointtarget data should be specified in the calibration coordinate system.
The returned robtarget data is expressed in the outermost coordinate system, taking the 
specified tool, work object and at execution time active program displacement 
(ProgDisp) and external axis offset (EOffs) into consideration.

Example

VAR robtarget p1;
CONST jointtarget jointpos1 := [...];

p1 := CalcRobT(jointpos1, tool1 \WObj:=wobj1);

The robtarget value corresponding to the jointtarget value jointpos1 is stored in 
p1. The tool tool1 and work object wobj1 are used for calculating of the position 
p1.

Return value Data type: robtarget

The robot and external axis position is returned in data type robtarget and expressed 
in the outermost coordinate system, taking the specified tool, work object and at exe-
cution time active program displacement (ProgDisp) and external axes offset (EOffs) 
into consideration.

If there is no active ProgDisp, the robot position is expressed in the object coordinate 
system.
If there are no active EOffs, the external axis position is expressed in the calibration 
coordinate system.

Arguments

CalcRobT ( Joint_target Tool [\WObj] )

Joint_target Data type: jointtarget

The joint position for the robot axes and external axes related to the calibration 
coordinate system.
RAPID reference part 2, Functions and data types A-Z 21



CalcRobT  
 Function
Tool Data type: tooldata

The tool used for calculation of the robot position.

[\WObj] (Work Object) Data type: wobjdata

The work object (coordinate system) to which the robot position returned by the 
function is related.

If this argument is omitted the work object wobj0 is used.
This argument must be specified when using stationary tool, coordinated external 
axes, or conveyor.

Program execution

The returned robtarget is calculated from the input jointtarget.
To calculate the cartesian robot position, the specified Tool, WObj (including coordi-
nated user frame) and at the execution time active ProgDisp are taken into consider-
ation.
To calculate the external axes position, the EOffs active at execution time is taken into 
consideration.

Syntax

CalcRobT’(’
[Joint_target ’:=’ ] <expression (IN) of jointtarget> ‘,’
[Tool ’:=’ ] <persistent (PERS) of tooldata>
[’\’WObj ’:=’ <persistent (PERS) of wobjdata>] ’)’

A function with a return value of the data type robtarget.
22 RAPID reference part 2, Functions and data types A-Z



 CalcRobT
Function  
Related information

Described in:
Calculate jointtarget from robtarget Functions - CalcJointT
Definition of position Data Types - robtarget
Definition of joint position Data Types - jointtarget
Definition of tools Data Types- tooldata
Definition of work objects Data Types - wobjdata
Coordinate systems Motion and I/O Principles - Coordi-
nate Systems
Program displacement coordinate system Instructions - PDispOn
External axes offset coordinate system Instructions - EOffsOn
RAPID reference part 2, Functions and data types A-Z 23



CalcRobT  
 Function
24 RAPID reference part 2, Functions and data types A-Z



 CalcRotAxisFrame
Function  
CalcRotAxisFrame - Calculate a rotational axis frame
CalcRotAxisFrame (Calculate Rotational Axis Frame) is used to calculate the user 
coordinate system of a rotational axis type mechanical unit.

Description

The definition of a user frame for a rotational external axis requires that the turntable 
(or similar mechanical structure) on the external axis has a marked reference point. 
Moreover the master robot’s base frame and TCP must be calibrated. The calibration 
procedure consists of a number of positionings for the robot’s TCP on the reference 
point when the turntable is rotated to different angles. See Figure 2.

Figure 2  Definition of points for a rotational axis

The user coordinate system for the rotational axis has its origin in the centre of the turn-
table. The z direction coincides with the axis of rotation and the x axis goes through 
the reference point. Figure 3 shows the user coordinate system for two different posi-
tionings of the turntable (turntable seen from above).

Figure 3  The user coordinate system at various angles of rotation

l

l

l

l

z

x

y

Axis of rotation

system of rotational single

World

Position 1Position 3

Position 4

Turntable run by
single external axis

Position 2

Reference point
on turntable

x

yz

Origin for user coordinate

l
x

y

0 degrees rotation

l

xy

+45 degrees rotation
RAPID reference part 2, Functions and data types A-Z 25



CalcRotAxisFrame  
 Function
Example

CONST robtarget pos1 := [...];
CONST robtarget pos2 := [...];
CONST robtarget pos3 := [...];
CONST robtarget pos4 := [...];
VAR robtarget targetlist{10};
VAR num max_err := 0;
VAR num mean_err := 0;
VAR pose resFr:=[...];
PERS tooldata tMyTool:= [...];

! Instructions for creating/ModPos pos1 - pos4 with TCP pointing at the turntable.
MoveJ pos1, v10, fine, tMyTool;
MoveJ pos2, v10, fine, tMyTool;
MoveJ pos3, v10, fine, tMyTool;
MoveJ pos4, v10, fine, tMyTool;

! Add the targets to the array
targetlist{1}:= pos1;
targetlist{2}:= pos2;
targetlist{3}:= pos3;
targetlist{4}:= pos4;

resFr:=CalcRotAxisFrame(STN_1 , targetlist, 4, max_err, mean_err);

! Update the system parameters.
IF (max_err < 1.0) AND (mean_err < 0.5) THEN

WriteCfgData "/MOC/SINGLE/STN_1", "base_frame_pos_x",resFr.trans.x;
WriteCfgData "/MOC/SINGLE/STN_1", "base_frame_pos_y",resFr.trans.y;
WriteCfgData "/MOC/SINGLE/STN_1", "base_frame_pos_z",resFr.trans.z;
WriteCfgData "/MOC/SINGLE/STN_1", "base_frame_orient_u0",resFr.rot.q1;
WriteCfgData "/MOC/SINGLE/STN_1", "base_frame_orient_u1",resFr.rot.q2;
WriteCfgData "/MOC/SINGLE/STN_1", "base_frame_orient_u2",resFr.rot.q3;
WriteCfgData "/MOC/SINGLE/STN_1", "base_frame_orient_u3",resFr.rot.q4;
 TPReadFK reg1,"Warmstart required for calibration to take effect."

 ,stEmpty,stEmpty,stEmpty, stEmpty,"OK";
WarmStart;

ENDIF

Four positions, pos1 - pos4, are created/modposed so that the robots tool tMyTool 
points to the same reference point on the external axis STN_1 but with different 
external axis rotation. The points are then used for calculating the external axis 
base frame, resFr, in relation to the world coordinate system. Finally, the frame 
is written to the configuration file and a warmstart is made to let the change to 
take effect.
26 RAPID reference part 2, Functions and data types A-Z



 CalcRotAxisFrame
Function  
Return value

CalcRotAxisFrame Data type: pose

The calculated frame.

Arguments

CalcRotAxisFrame (MechUnit [\AxisNo] TargetList TargetsInList
MaxErr MeanErr)

MechUnit Data type: mecunit

Name of the mechnical unit to be calibrated.

[\AxisNo] Data type: num

Optional argument defining the axis number for which a frame should be deter-
mined. Default value is 1 applying to single rotational axis. For mechanical units 
with several axes, the axis number should be supplied with this argument.

TargetList Data type: robtarget

Array of robtargets holding the positions defined by pointing out the turntable. 
Minimum number of robtargets is 4, maximum 10.

TargetsInList Data type: num

Number of robtargets in array.

MaxErr Data type: num

The estimated maximum error in mm.

MeanErr Data type: num

The estimated mean error in mm.

Error handling

If the positions don’t have the required relation or are not specified with enough accu-
racy, the system variable ERRNO is set to ERR_FRAME. This error can then be han-
dled in an error handler.
RAPID reference part 2, Functions and data types A-Z 27



CalcRotAxisFrame  
 Function
Syntax

CalcRotAxisFrame’(’
[MechUnit ’:=’] <variable (VAR) of mecunit>
[\AxisNo ’:=’ <expression (IN) of num> ]’,’
[TargetList ’:=’] <array {*} (IN) of robtarget> ’,’
[TargetsInList ’:=’] <expression (IN) of num> ’,’
[MaxErr ’:=’] <variable (VAR) of num> ’,’
[MeanErr ’:=’] <variable (VAR) of num>’)’

A function with a return value of the data type pose.

Related information

Described in:
Mathematical instructions and functions RAPID Summary - Mathematics
28 RAPID reference part 2, Functions and data types A-Z



 CDate
Function  
CDate - Reads the current date as a string
CDate (Current Date) is used to read the current system date.

This function can be used to present the current date to the operator on the teach pen-
dant display or to paste the current date into a text file that the program writes to.

Example

VAR string date;

date := CDate();

The current date is stored in the variable date.

Return valueData type: string

The current date in a string.

The standard date format is “year-month-day”, e.g. ”1998-01-29”. 

Example

date := CDate();
TPWrite “The current date is: “+date;
Write logfile, date;

The current date is written to the teach pendant display and into a text file.

Syntax

CDate ’(’ ’)’ 

A function with a return value of the type string.

Related information

Described in:
Time instructions RAPID Summary - System & Time
Setting the system clock User’s Guide - Service
RAPID reference part 2, Functions and data types A-Z 29



CDate  
 Function
30 RAPID reference part 2, Functions and data types A-Z



 CJointT
Function  
CJointT - Reads the current joint angles
CJointT (Current Joint Target) is used to read the current angles of the robot axes and 
external axes. 

Example

VAR jointtarget joints;

joints := CJointT();

The current angles of the axes for the robot and external axes are stored in joints. 

Return value Data type: jointtarget

The current angles in degrees for the axes of the robot on the arm side.

The current values for the external axes, in mm for linear axes, in degrees for rotational 
axes.

The returned values are related to the calibration position.

Syntax

CJointT’(’’)’

A function with a return value of the data type jointtarget.

Related information

Described in:
Definition of joint Data Types - jointtarget
Reading the current motor angle Functions - ReadMotor
RAPID reference part 2, Functions and data types A-Z 31



CJointT  
 Function
32 RAPID reference part 2, Functions and data types A-Z



 ClkRead
Function  
ClkRead - Reads a clock used for timing
ClkRead is used to read a clock that functions as a stop-watch used for timing.

Example

reg1:=ClkRead(clock1);

The clock clock1 is read and the time in seconds is stored in the variable reg1.

Return valueData type: num

The time in seconds stored in the clock. Resolution 0.010 seconds.

Argument

ClkRead (Clock)

Clock Data type: clock

The name of the clock to read.

Program execution

A clock can be read when it is stopped or running.

Once a clock is read it can be read again, started again, stopped, or reset.

Error handling

If the clock runs for 4,294,967 seconds (49 days 17 hours 2 minutes 47 seconds) it 
becomes overflowed and the system variable ERRNO is set to ERR_OVERFLOW.

The error can be handled in the error handler.

Syntax

ClkRead ’(’
[ Clock ’:=’ ] < variable (VAR) of clock > ’)’ 

A function with a return value of the type num.
RAPID reference part 2, Functions and data types A-Z 33



ClkRead  
 Function
Related information

Described in:
Clock instructions RAPID Summary - System & Time
Clock overflow Data Types - clock
More examples Instructions - ClkStart
34 RAPID reference part 2, Functions and data types A-Z



 Cos
Function  
Cos - Calculates the cosine value
Cos (Cosine) is used to calculate the cosine value from an angle value.

Example

VAR num angle;
VAR num value;
.
.
value := Cos(angle);

Return value Data type: num

The cosine value, range = [-1, 1] .

Arguments

Cos  (Angle)

Angle Data type: num

The angle value, expressed in degrees.

Syntax

Cos’(’
[Angle ’:=’] <expression (IN) of num>
’)’

A function with a return value of the data type num.

Related information

Described in:
Mathematical instructions and functions RAPID Summary - Mathematics
RAPID reference part 2, Functions and data types A-Z 35



Cos  
 Function
36 RAPID reference part 2, Functions and data types A-Z



 CPos
Function  
CPos - Reads the current position (pos) data
CPos (Current Position) is used to read the current position of the robot. 

This function returns the x, y, and z values of the robot TCP as data of type pos. If the 
complete robot position (robtarget) is to be read, use the function CRobT instead. 

Example

VAR pos pos1;

MoveL *, v500, fine \Inpos := inpos50, tool1;
pos1 := CPos(\Tool:=tool1 \WObj:=wobj0);

The current position of the robot TCP is stored in variable pos1. The tool tool1 
and work object wobj0 are used for calculating the position.

Note that the robot is standing still before the position is read and calculated.
This is achieved by using the stop point fine within position accuracy inpos50 in 
the preceding movement instruction.

Return value Data type: pos

The current position (pos) of the robot with x, y, and z in the outermost coordinate 
system, taking the specified tool, work object and active ProgDisp coordinate sys-
tem into consideration.

Arguments

CPos ([\Tool] [\WObj])

[\Tool] Data type: tooldata

The tool used for calculation of the current robot position.

If this argument is omitted the current active tool is used.
RAPID reference part 2, Functions and data types A-Z 37



CPos  
 Function
[\WObj] (Work Object) Data type: wobjdata

The work object (coordinate system) to which the current robot position returned 
by the function is related.

If this argument is omitted the current active work object is used.

It is very sensible to always specify the arguments \Tool and \WObj during program-
ming. The function will then always return the wanted position even if some other tool 
or work object has been activated manually.

Program execution

The coordinates returned represent the TCP position in the ProgDisp coordinate sys-
tem.

Example

VAR pos pos2;
VAR pos pos3;
VAR pos pos4;

pos2 := CPos(\Tool:=grip3 \WObj:=fixture);
.
.
pos3 := CPos(\Tool:=grip3 \WObj:=fixture);
pos4 := pos3-pos2;

The x, y, and z position of the robot is captured at two places within the program 
using the CPos function. The tool grip3 and work object fixture are used for cal-
culating the position. The x, y and z distances travelled between these positions 
are then calculated and stored in the pos variable pos4.

Syntax

CPos ’(’
[’\’Tool ’:=’ <persistent (PERS) of tooldata>]
[’\’WObj ’:=’ <persistent (PERS) of wobjdata>] ’)’

A function with a return value of the data type pos.
38 RAPID reference part 2, Functions and data types A-Z



 CPos
Function  
Related information

Described in:
Definition of position Data Types - pos
Definition of tools Data Types- tooldata
Definition of work objects Data Types - wobjdata
Coordinate systems Motion and I/O Principles - Coordi-
nate Systems
Reading the current robtarget Functions - CRobT
RAPID reference part 2, Functions and data types A-Z 39



CPos  
 Function
40 RAPID reference part 2, Functions and data types A-Z



 CRobT
Function  
CRobT - Reads the current position (robtarget) data
CRobT (Current Robot Target) is used to read the current position of the robot and 
external axes.

This function returns a robtarget value with position (x, y, z), orientation (q1 ... q4), 
robot axes configuration and external axes position. If only the x, y, and z values of the 
robot TCP (pos) are to be read, use the function CPos instead.

Example

VAR robtarget p1;

MoveL *, v500, fine \Inpos := inpos50, tool1;
p1 := CRobT(\Tool:=tool1 \WObj:=wobj0);

The current position of the robot and external axes is stored in p1. The tool tool1 
and work object wobj0 are used for calculating the position.

Note that the robot is standing still before the position is read and calculated.
This is achieved by using the stop point fine within position accuracy inpos50 in 
the preceding movement instruction.

Return value Data type: robtarget

The current position of the robot and external axes in the outermost coordinate sys-
tem, taking the specified tool, work object and active ProgDisp/ExtOffs coordinate 
system into consideration.

Arguments

CRobT ([\Tool] [\WObj])

[\Tool] Data type: tooldata

The tool used for calculation of the current robot position.

If this argument is omitted the current active tool is used.

[\WObj] (Work Object) Data type: wobjdata

The work object (coordinate system) to which the current robot position returned 
by the function is related.

If this argument is omitted the current active work object is used.
RAPID reference part 2, Functions and data types A-Z 41



CRobT  
 Function
It is very sensible to always specify the arguments \Tool and \WObj during program-
ming. The function will then always return the wanted position even if some other tool 
or work object has been activated manually.

Program execution

The coordinates returned represent the TCP position in the ProgDisp coordinate sys-
tem. External axes are represented in the ExtOffs coordinate system. 

Example

VAR robtarget p2;

p2 := ORobT( RobT(\Tool:=grip3 \WObj:=fixture) );

The current position in the object coordinate system (without any ProgDisp or 
ExtOffs) of the robot and external axes is stored in p2. The tool grip3 and work 
object fixture are used for calculating the position.

Syntax

CRobT’(’
[’\’Tool ’:=’ <persistent (PERS) of tooldata>]
[’\’WObj ’:=’ <persistent (PERS) of wobjdata>] ’)’

A function with a return value of the data type robtarget.

Related information

Described in:
Definition of position Data Types - robtarget
Definition of tools Data Types- tooldata
Definition of work objects Data Types - wobjdata
Coordinate systems Motion and I/O Principles - Coordi-
nate Systems
ExtOffs coordinate system Instructions - EOffsOn
Reading the current pos (x, y, z only) Functions - CPos
42 RAPID reference part 2, Functions and data types A-Z



 CSpeedOverride
Function  
CSpeedOverride - Reads the current override speed 
CSpeedOverride is used to read the speed override set by the operator from the Pro-
gram or Production Window. The return value is displayed as a percentage where 
100% corresponds to the programmed speed. 

Note! Must not be mixed up with the argument Override in the RAPID instruction 
VelSet.

Example

VAR num myspeed;

myspeed := CSpeedOverride();

The current override speed will be stored in the variable myspeed.
E.g if the value is 100 this is equivalent to 100%.

Return value Data type: num

The override speed value in percent of the programmed speed. This will be a numeric 
value in the range 0 - 100.

Syntax

CSpeedOverride’(’’)’

A function with a return value of the data type num.

Related information

Described in:
Changing the Override Speed Users Guide Programming and Test-

ing Production Running
RAPID reference part 2, Functions and data types A-Z 43



CSpeedOverride  
 Function
44 RAPID reference part 2, Functions and data types A-Z



 CTime
Function  
CTime - Reads the current time as a string
CTime is used to read the current system time.

This function can be used to present the current time to the operator on the teach pen-
dant display or to paste the current time into a text file that the program writes to.

Example

VAR string time;

time := CTime();

The current time is stored in the variable time.

Return valueData type: string

The current time in a string.

The standard time format is "hours:minutes:seconds", e.g. "18:20:46".

Example

time := CTime();
TPWrite “The current time is: “+time;
Write logfile, time;

The current time is written to the teach pendant display and written into a text
file.

Syntax

CTime ’(’ ’)’ 

A function with a return value of the type string.
RAPID reference part 2, Functions and data types A-Z 45



CTime  
 Function
Related Information

Described in:
Time and date instructions RAPID Summary - System & Time
Setting the system clock User’s Guide - System Parameters
46 RAPID reference part 2, Functions and data types A-Z



 CTool
Function  
CTool - Reads the current tool data
CTool (Current Tool) is used to read the data of the current tool.

Example

PERS tooldata temp_tool:= [ TRUE, [ [0, 0, 0], [1, 0, 0 ,0] ], 
[0.001, [0, 0, 0.001], [1, 0, 0, 0], 0, 0, 0] ];

temp_tool := CTool();

The value of the current tool is stored in the variable temp_tool. 

Return value Data type: tooldata

This function returns a tooldata value holding the value of the current tool, i.e. the tool 
last used in a movement instruction.

The value returned represents the TCP position and orientation in the wrist centre coor-
dinate system, see tooldata. 

Syntax

CTool’(’’)’

A function with a return value of the data type tooldata.

Related information

Described in:
Definition of tools Data Types- tooldata
Coordinate systems Motion and I/O Principles - Coordi-
nate Systems
RAPID reference part 2, Functions and data types A-Z 47



CTool  
 Function
48 RAPID reference part 2, Functions and data types A-Z



 CWObj
Function  
CWObj - Reads the current work object data
CWObj (Current Work Object) is used to read the data of the current work object.

Example

PERS wobjdata temp_wobj;

temp_wobj := CWObj();

The value of the current work object is stored in the variable temp_wobj. 

Return value Data type: wobjdata

This function returns a wobjdata value holding the value of the current work object, 
i.e. the work object last used in a movement instruction.

The value returned represents the work object position and orientation in the world 
coordinate system, see wobjdata. 

Syntax

CWObj’(’’)’

A function with a return value of the data type wobjdata.

Related information

Described in:
Definition of work objects Data Types- wobjdata
Coordinate systems Motion and I/O Principles - Coordi-
nate Systems
RAPID reference part 2, Functions and data types A-Z 49



CWObj  
 Function
50 RAPID reference part 2, Functions and data types A-Z



 DefAccFrame
Function  
DefAccFrame - Define an accurate frame
DefAccFrame (Define Accurate Frame) is used to define a frame from three to ten 
original positions and the same number of displaced positions.

Description

A frame can be defined when a set of targets are known at two different locations. 
Thus, the same physical positions are used but expressed differently. 
Consider it in two different approaches:

I: The same physical positions are expressed in relation to different coordinate 
systems. For example, a number of positions are retrieved from a CAD drawing, 
thus the positions are expressed in CAD local coordinate system. The same posi-
tions are then expressed in robot world coordinate system. From these two sets 
of positions the frame between CAD coordinate system and robot world coordi-
nate system is calculated. 

II: A number of positions are related to an object in an original position. After a 
displacement of the object, the positions are determined again (often searched 
for). From these two sets of positions (old positions, new positions) the displace-
ment frame is calculated. 

Three targets are enough to define a frame, but to improve accuracy several 
points should be used.

Example
RAPID reference part 2, Functions and data types A-Z 51



DefAccFrame  
 Function
CONST robtarget p1 := [...];
CONST robtarget p2 := [...];
CONST robtarget p3 := [...];
CONST robtarget p4 := [...];
CONST robtarget p5 := [...];

VAR robtarget p6 := [...];
VAR robtarget p7 := [...];
VAR robtarget p8 := [...];
VAR robtarget p9 := [...];
VAR robtarget p10 := [...];
VAR robtarget pWCS{5};
VAR robtarget pCAD{5};

VAR pose frame1;
VAR num max_err;
VAR num mean_err;

! Add positions to robtarget arrays
pCAD{1}:=p1;
....
pCAD{5}:=p5;

pWCS{1}:=p6;
....
pWCS{5}:=p10;

frame1 := DefAccFrame (pCAD, pWCS, 5, max_err, mean_err);

Five positions p1- p5, related to an object, have been stored. The five positions 
are also stored in relation to world coordinate system as p6-p10. From these 10 
positions the frame, frame1, between the object and the world coordinate system 
is calculated. The frame will be the CAD frame expressed in the world coordinate 
system. If the input order of the targetlists is exchanged, i.e. 
DefAccFrame(pWCS, pCAD....) the world frame will be expressed in the CAD 
coordinate system.

Return value

DefAccFrame Data type: pose

The calculated frame.
52 RAPID reference part 2, Functions and data types A-Z



 DefAccFrame
Function  
Arguments

DefAccFrame (TargetListOne TargetListTwo TargetsInList  
MaxErr MeanErr)

TargetListOne Data type: robtarget

Array of robtargets holding the positions defined in coordinate system one. Min-
imum number of robtargets is 3, maximum 10

TargetListTwo Data type: robtarget

Array of robtargets holding the positions defined in coordinate system two. Min-
imum number of robtargets is 3, maximum 10.

TargetsInList Data type: num

Number of robtargets in array.

MaxErr Data type: num

The estimated maximum error in mm.

MeanErr Data type: num

The estimated mean error in mm.

Error handling

If the positions don’t have the required relation or are not specified with enough accu-
racy, the system variable ERRNO is set to ERR_FRAME. This error can then be han-
dled in an error handler.

Syntax

DefAccFrame’(’
[TargetListOne ’:=’] <array {*} (IN) of robtarget> ’,’
[TargetListTwo ’:=’] <array {*} (IN) of robtarget> ’,’
[TargetsInList ’:=’] <expression (IN) of num> ’,’
[MaxErr ’:=’] <variable (VAR) of num> ’,’
[MeanErr ’:=’] <variable (VAR) of num>’)’

A function with a return value of the data type pose.
RAPID reference part 2, Functions and data types A-Z 53



DefAccFrame  
 Function
Related information

Described in:
Calculating a frame from three positions Functions - DefFrame
Calculate a displacement frame Functions - DefDFrame
54 RAPID reference part 2, Functions and data types A-Z



 DefDFrame
Function  
DefDFrame - Define a displacement frame
DefDFrame (Define Displacement Frame) is used to calculate a displacement frame 
from three original positions and three displaced positions.

Example

CONST robtarget p1 := [...];
CONST robtarget p2 := [...];
CONST robtarget p3 := [...];
VAR robtarget p4;
VAR robtarget p5;
VAR robtarget p6;
VAR pose frame1;
.
!Search for the new positions
SearchL sen1, p4, *, v50, tool1;
.
SearchL sen1, p5, *, v50, tool1;
.
SearchL sen1, p6, *, v50, tool1;
frame1 := DefDframe (p1, p2, p3, p4, p5, p6);
.
!activation of the displacement defined by frame1
PDispSet frame1; 

Three positions p1- p3, related to an object in an original position, have been 
stored. After a displacement of the object, three new positions are searched for 
and stored as p4-p6. The displacement frame is calculated from these six posi-
tions. Then the calculated frame is used to displace all the stored positions in the 
program.

Return value Data type: pose

The displacement frame.

p1

p3

p2
p4

p6

p5

the new plane
RAPID reference part 2, Functions and data types A-Z 55



DefDFrame  
 Function
Arguments

DefDFrame  (OldP1  OldP2  OldP3  NewP1  NewP2  NewP3)

OldP1 Data type: robtarget

The first original position. 

OldP2 Data type: robtarget

The second original position. 

OldP3 Data type: robtarget

The third original position. 

NewP1 Data type: robtarget

The first displaced position. The difference between OldP1 and NewP1 will 
define the translation part of the frame and must be measured and determined 
with great accuracy.

NewP2 Data type: robtarget

The second displaced position. The line NewP1 ... NewP2 will define the rotation 
of the old line OldP1 ... OldP2.

NewP3 Data type: robtarget

The third displaced position. This position will define the rotation of the plane, 
e.g. it should be placed on the new plane of NewP1, NewP2 and NewP3.

Error handling

If it is not possible to calculate the frame because of bad accuracy in the positions, the 
system variable ERRNO is set to ERR_FRAME. This error can then be handled in the 
error handler.

Syntax

DefDFrame’(’
[OldP1 ’:=’] <expression (IN) of robtarget> ’,’
[OldP2 ’:=’] <expression (IN) of robtarget> ’,’
[OldP3 ’:=’] <expression (IN) of robtarget> ’,’
[NewP1 ’:=’] <expression (IN) of robtarget> ’,’
[NewP2 ’:=’] <expression (IN) of robtarget> ’,’
[NewP3 ’:=’] <expression (IN) of robtarget> ’)’

A function with a return value of the data type pose.
56 RAPID reference part 2, Functions and data types A-Z



 DefDFrame
Function  
Related information

Described in:
Activation of displacement frame Instructions - PDispSet
Manual definition of displacement frame User’s Guide - Calibration
RAPID reference part 2, Functions and data types A-Z 57



DefDFrame  
 Function
58 RAPID reference part 2, Functions and data types A-Z



 DefFrame
Function  
DefFrame - Define a frame
DefFrame (Define Frame) is used to calculate a frame, from three positions defining 
the frame.

Example

Three positions, p1- p3, related to the object coordinate system, are used to define the 
new coordinate system, frame1. The first position, p1, is defining the origin of frame1, 
the second position, p2, is defining the direction of the x-axis and the third position, 
p3, is defining the location of the xy-plane. The defined frame1 may be used as a dis-
placement frame, as shown in the example below:

CONST robtarget p1 := [...];
CONST robtarget p2 := [...];
CONST robtarget p3 := [...];
VAR pose frame1;
.
.
frame1 := DefFrame (p1, p2, p3);
.
.
!activation of the displacement defined by frame1
PDispSet frame1; 

Return value Data type: pose

The calculated frame.

The calculation is related to the active object coordinate system.

p1

p3

p2

x

z

y

object frame

x

y

z

frame1
RAPID reference part 2, Functions and data types A-Z 59



DefFrame  
 Function
Arguments

DefFrame  (NewP1  NewP2  NewP3  [\Origin])

NewP1 Data type: robtarget

The first position, which will define the origin of the new frame.

NewP2 Data type: robtarget

The second position, which will define the direction of the x-axis of the new 
frame.

NewP3 Data type: robtarget

The third position, which will define the xy-plane of the new frame. The position 
of point 3 will be on the positive y side, see the figure above.

[\Origin] Data type: num

Optional argument, which will define how the origin of the frame will be placed. 
Origin = 1, means that the origin is placed in NewP1, i.e. the same as if this argu-
ment is omitted. Origin = 2 means that the origin is placed in NewP2, see the fig-
ure below.

Origin = 3 means that the origin is placed on the line going through NewP1 and NewP2 
and so that NewP3 will be placed on the y axis, see the figure below.

New P1

New P3

New P2

x

z

y

object frame

x

yz

frame1
60 RAPID reference part 2, Functions and data types A-Z



 DefFrame
Function  
Other values, or if Origin is omitted, will place the origin in NewP1.

Limitations

The three positions p1 - p3, defining the frame, must define a well shaped triangle. The 
most well shaped triangle is the one with all sides of equal length.

The triangle is not considered to be well shaped if the angle θ a is too small. The angle 
θ is too small if: 

The triangle p1, p2, p3 must not be too small, i.e. the positions cannot be too close. The 
distances between the positions p1 - p2 and p1 - p3 must not be less than 0.1 mm.

Error handling

If the frame cannot be calculated because of the above limitations, the system variable 
ERRNO is set to ERR_FRAME. This error can then be handled in the error handler.

New P1

New P3

New P2

x

z

y

object frame

x

y

z

frame1

p2
p3

p1
θ

Θcos 1 10 4––<
RAPID reference part 2, Functions and data types A-Z 61



DefFrame  
 Function
Syntax

DefFrame’(’
[NewP1 ’:=’] <expression (IN) of robtarget> ’,’
[NewP2 ’:=’] <expression (IN) of robtarget> ’,’
[NewP3 ’:=’] <expression (IN) of robtarget> 
[’\’Origin ’:=’ <expression (IN) of num> ]’)’

A function with a return value of the data type pose.

Related information

Described in:
Mathematical instructions and functions RAPID Summary - Mathematics
Activation of displacement frame Instructions - PDispSet
62 RAPID reference part 2, Functions and data types A-Z



 Dim
Function  
Dim - Obtains the size of an array
Dim (Dimension) is used to obtain the number of elements in an array.

Example

PROC arrmul(VAR num array{*}, num factor)

FOR index FROM 1 TO Dim(array, 1) DO
array{index} := array{index} * factor;

ENDFOR

ENDPROC

All elements of a num array are multiplied by a factor. 
This procedure can take any one-dimensional array of data type num as an input. 

Return value Data type: num

The number of array elements of the specified dimension. 

Arguments

Dim (ArrPar DimNo)

ArrPar (Array Parameter) Data type: Any type

The name of the array.

DimNo (Dimension Number) Data type: num

The desired array dimension: 1 = first dimension 
2 = second dimension
3 = third dimension

Example

PROC add_matrix(VAR num array1{*,*,*}, num array2{*,*,*})

IF Dim(array1,1) <> Dim(array2,1) OR Dim(array1,2) <> Dim(array2,2) OR
Dim(array1,3) <> Dim(array2,3) THEN
TPWrite "The size of the matrices are not the same";
Stop;

ELSE
FOR i1 FROM 1 TO Dim(array1, 1) DO
RAPID reference part 2, Functions and data types A-Z 63



Dim  
 Function
FOR i2 FROM 1 TO Dim(array1, 2) DO
FOR i3 FROM 1 TO Dim(array1, 3) DO

array1{i1,i2,i3} := array1{i1,i2,i3} + array2{i1,i2,i3};
ENDFOR

ENDFOR
ENDFOR

ENDIF
RETURN;

ENDPROC

Two matrices are added. If the size of the matrices differs, the program stops and 
an error message appears.
This procedure can take any three-dimensional arrays of data type num as an 
input. 

Syntax

Dim ’(’
[ArrPar’:=’] <reference (REF) of any type> ’,’
[DimNo’:=’] <expression (IN) of num> ’)’

A REF parameter requires that the corresponding argument be either a constant, a vari-
able or an entire persistent. The argument could also be an IN parameter, a VAR param-
eter or an entire PERS parameter.

A function with a return value of the data type num.

Related information

Described in:
Array parameters Basic Characteristics - Routines
Array declaration Basic Characteristics - Data
64 RAPID reference part 2, Functions and data types A-Z



 Distance
Function  
Distance - Distance between two points
Distance is used to calculate the distance between two points in the space.

Example

VAR num dist;
CONST pos p1 := [4,0,4];
CONST pos p2 := [-4,4,4];
...
dist := Distance(p1, p2);

The distance in space between the points p1 and p2 is calculated and stored in 
the variable dist.

Return value Data type: num

The distance (always positive) between the points.

Arguments

Distance  (Point1  Point2)

Point1 Data type: pos

The first point described by the pos data type.

Point2 Data type: pos

The second point described by the pos data type.

z

y

x

p1

p2
RAPID reference part 2, Functions and data types A-Z 65



Distance  
 Function
Program execution

Calculation of the distance between the two points:

Syntax

Distance’(’
[Point1 ’:=’] <expression (IN) of pos> ’,’
[Point2 ’:=’] <expression (IN) of pos>
’)’

A function with a return value of the data type num.

Related information

Described in:
Mathematical instructions and functions RAPID Summary - Mathematics
Definition of pos Data Type - pos

z

y

x

x1,y1,z1

x2, y2, z2

x1 x2–( )2 y1 y2–( )2 z1 z2–( )2+ + 
 distance =
66 RAPID reference part 2, Functions and data types A-Z



 DotProd
Function  
DotProd - Dot product of two pos vectors
DotProd (Dot Product) is used to calculate the dot (or scalar) product of two pos vec-
tors. The typical use is to calculate the projection of one vector upon the other or to 
calculate the angle between the two vectors.

Example

The dot or scalar product of two vectors A and B is a scalar, which equals the products 
of the magnitudes of A and B and the cosine of the angle between them.

The dot product:

• is less than or equal to the product of their magnitudes.
• can be either a positive or a negative quantity, depending whether the angle between 

them is smaller or larger then 90 degrees.
• is equal to the product of the magnitude of one vector and the projection of the other 

vector upon the first one.
• is zero when the vectors are perpendicular to each other.

The vectors are described by the data type pos and the dot product by the data type 
num:

VAR num dotprod;
VAR pos vector1;
VAR pos vector2;
.
.
vector1 := [1,1,1];
vector2 := [1,2,3];
dotprod := DotProd(vector1, vector2);

A

B

θAB

B θcos AB A

A B⋅ A B θABcos=
RAPID reference part 2, Functions and data types A-Z 67



DotProd  
 Function
Return value Data type: num

The value of the dot product of the two vectors.

Arguments

DotProd  (Vector1  Vector2)

Vector1 Data type: pos

The first vector described by the pos data type.

Vector2 Data type: pos

The second vector described by the pos data type.

Syntax

DotProd’(’
[Vector1 ’:=’] <expression (IN) of pos> ’,’
[Vector2 ’:=’] <expression (IN) of pos>
’)’

A function with a return value of the data type num.

Related information

Described in:
Mathematical instructions and functions RAPID Summary - Mathematics
68 RAPID reference part 2, Functions and data types A-Z



 DOutput
Function  
DOutput - Reads the value of a digital output signal
DOutput is used to read the current value of a digital output signal.

Example

IF DOutput(do2) = 1 THEN . . . 

If the current value of the signal do2 is equal to 1, then . . .

Return value Data type: dionum

The current value of the signal (0 or 1). 

Arguments

DOutput (Signal)

Signal Data type: signaldo

The name of the signal to be read.

Program execution

The value read depends on the configuration of the signal. If the signal is inverted in 
the system parameters, the value returned by this function is the opposite of the true 
value of the physical channel.

Example

IF DOutput(auto_on) <> active THEN . . . 

If the current value of the system signal auto_on is not active, then ..., i.e. if the 
robot is in the manual operating mode, then ... Note that the signal must first be 
defined as a system output in the system parameters.

Syntax

DOutput ’(’
[ Signal ’:=’ ] < variable (VAR) of signaldo > ’)’
RAPID reference part 2, Functions and data types A-Z 69



DOutput  
 Function
A function with a return value of the data type dionum.

Related information

Described in:
Input/Output instructions RAPID Summary - Input and Output 

Signals
Input/Output functionality in general Motion and I/O Principles - I/O Princi-

ples
Configuration of I/O User’s Guide - System Parameters
70 RAPID reference part 2, Functions and data types A-Z



 EulerZYX
Function  
EulerZYX - Gets euler angles from orient
EulerZYX (Euler ZYX rotations) is used to get an Euler angle component from an orient 
type variable.

Example

VAR num anglex;
VAR num angley;
VAR num anglez;
VAR pose object;
.
.
anglex := EulerZYX(\X, object.rot);
angley := EulerZYX(\Y, object.rot);
anglez := EulerZYX(\Z, object.rot);

Return value Data type: num

The corresponding Euler angle, expressed in degrees, range [-180, 180].

Arguments

EulerZYX  ([\X] | [\Y] | [\Z]  Rotation)

The arguments \X, \Y and \Z are mutually exclusive. If none of these are specified, a 
run-time error is generated.

[\X] Data type: switch

Gets the rotation around the X axis. 

[\Y] Data type: switch

Gets the rotation around the Y axis. 

[\Z] Data type: switch

Gets the rotation around the Z axis. 

Rotation Data type: orient

The rotation in its quaternion representation. 
RAPID reference part 2, Functions and data types A-Z 71



EulerZYX  
 Function
Syntax

EulerZYX’(’
['\'X ’,’] | ['\'Y ’,’] | ['\'Z ’,’] 
[Rotation ’:=’] <expression (IN) of orient> 
’)’

A function with a return value of the data type num.

Related information

Described in:
Mathematical instructions and functions RAPID Summary - Mathematics
72 RAPID reference part 2, Functions and data types A-Z



 Exp
Function  
Exp - Calculates the exponential value
Exp (Exponential) is used to calculate the exponential value, ex.

Example

VAR num x;
VAR num value;
.
.
value:= Exp( x);

Return value Data type: num

The exponential value ex .

Arguments

Exp  (Exponent)

Exponent Data type: num

The exponent argument value.

Syntax

Exp’(’
[Exponent ’:=’] <expression (IN) of num>
’)’

A function with a return value of the data type num.

Related information

Described in:
Mathematical instructions and functions RAPID Summary - Mathematics
RAPID reference part 2, Functions and data types A-Z 73



Exp  
 Function
74 RAPID reference part 2, Functions and data types A-Z



 FileTime
Function  
FileTime - Retrieve time information about a file
FileTime is used to retrieve the last time for modification, access or file status change 
of a file. The time is measured in secs since 00:00:00 GMT, Jan. 1 1970. The time is 
returned as a num.

Example

Load "HOME:/notmymod.mod";
WHILE TRUE DO

! Call some routine in notmymod
notmymodrout;
IF FileTime("HOME:/notmymod.mod" \ModifyTime) 

> ModTime("notmymod") THEN
 UnLoad "HOME:notmymod.mod";
 Load "HOME:notmymod.mod";
ENDIF

ENDWHILE

This program reloads a module if there is a newer at the source. It uses the 
ModTime to retrieve the latest loading time for the specified module, and to com-
pare it to the FileTime\ModifyTime at the source. Then, if the source is newer, 
the program unloads and loads the module again.

Return value Data type: num

The time measured in secs since 00:00:00 GMT, Jan 1 1970.

Arguments

FileTime ( Path [\ModifyTime] | [\AccessTime] | [\StatCTime] )

Path Data type: string

The file specified with a full or relative path.

ModifyTime Data type: switch

Last modification time. 
RAPID reference part 2, Functions and data types A-Z 75



FileTime  
 Function
AccessTime Data type: switch

Time of last access (read, execute of modify).

StatCTime Data type: switch

Last file status (access qualification) change time. 

Program execution

This function returns a numeric that specifies the time since the last:

- Modification
- Access
- File status change

of the specified file.

Example

This is a complete example that implements an alert service for maximum 10 files.

LOCAL RECORD falert
string filename;
num ftime;

ENDRECORD

LOCAL VAR falert myfiles[10];
LOCAL VAR num currentpos:=0;
LOCAL VAR intnum timeint;

LOCAL TRAP mytrap
VAR num pos:=1;
WHILE pos <= currentpos DO

IF FileTime(myfiles{pos}.filename \ModifyTime) > myfiles{pos}.ftime THEN
 TPWrite "The file "+myfiles{pos}.filename+" is changed";
ENDIF

 pos := pos+1;
ENDWHILE

ENDTRAP

PROC alertInit(num freq)
currentpos:=0;
CONNECT timeint WITH mytrap;
ITimer freq,timeint;

ENDPROC

PROC alertFree()
IDelete timeint;
76 RAPID reference part 2, Functions and data types A-Z



 FileTime
Function  
ENDPROC

PROC alertNew(string filename)
currentpos := currentpos+1;
IF currentpos <= 10 THEN

myfiles{currentpos}.filename := filename;
myfiles{currentpos}.ftime := FileTime (filename \ModifyTime);

ENDIF
ENDPROC

Error handling

If the file does not exist, the system variable ERRNO is set to ERR_FILEACC. This 
error can then be handled in the error handler.

Syntax

FileTime ’(’
[ Path ’:=’ ] < expression (IN) of string> 
[ '\'ModifyTime] |
[ '\'AccessTime] |
[ '\'StatCTime] ’)’

A function with a return value of the data type num.

Related information

Described in:
Last time a module was loaded Functions - ModTime
RAPID reference part 2, Functions and data types A-Z 77



FileTime  
 Function
78 RAPID reference part 2, Functions and data types A-Z



 GetNextMechUnit
Function  
GetNextMechUnit - Get name of mechanical units
GetNextMechUnit is used for retrieving name of mechanical units in the robot system.

Examples 

VAR num listno := 0;
VAR string name := "";

TPWrite "List of mechanical units:";
WHILE GetNextMechUnit(listno, name) DO

TPWrite name;
! listno := listno + 1is done by GetNextMechUnit

ENDWHILE

The name of all mechanical units available in the system, will be displayed on the
Teach Pendant.

Return ValueData type: bool

TRUE if a mechanical unit was found, otherwise FALSE.

Arguments

GetNextMechUnit ( ListNumber UnitName )

ListNumber Data type: num

This specifies which items in the list of mechanical units are to be retrieved. At 
return, this variable is always incremented by one to make it easy to access the 
next unit in the list. 
The first mechanical unit in the list has index 0.

UnitName Data type: string

The name of the mechanical unit.
RAPID reference part 2, Functions and data types A-Z 79



GetNextMechUnit  
 Function
Example

VAR num listno := 4;
VAR string name := "";
VAR bool found := FALSE;

found := GetNextMechUnit (listno, name);

If found equal to TRUE, the name of mechanical unit number 4 will be in the vari-
able name, else name contains only an empty string.

Syntax

GetNextMechUnit ’(’
[ ListNumber’:=’ ] < variable (VAR) of num> ’,’
[ UnitName’:=’ ] < variable (VAR) of string> ’)’

A function with a return value of the data type bool.

Related information

Described in:
Mechanical unit Data Types - mecunit
Activating/Deactivating mechanical units Instructions - ActUnit, DeactUnit
Configuration of mechanical units User’s Guide - System Parameters
Characteristics of non-value data types Basic Characteristics - Data Types
80 RAPID reference part 2, Functions and data types A-Z



 GetNextSym
Function  
GetNextSym - Get next matching symbol
GetNextSym (Get Next Symbol) is used together with SetDataSearch to retrieve data 
objects from the system.

Example

VAR datapos block;
VAR string name;
VAR bool truevar:=TRUE;
...
SetDataSearch “bool” \Object:=”^my” \InMod:=”mymod”\LocalSym;
WHILE GetNextSym(name,block) DO

SetDataVal name\Block:=block,truevar;
ENDWHILE

This session will set all local bool data objects that begin with my in the mod-
ule 
mymod to TRUE.

Return value Data type: bool

TRUE if a new object has been retrieved, the object name and its enclosed block is then 
returned in its arguments.

FALSE if no more objects match.

Arguments

GetNextSym  Object Block [\Recursive] 

Object Data type: string

Variable (VAR or PERS) to store the name of the data object that will be 
retrieved.

Block Data type: datapos

The enclosed block to the object. 

[\Recursive] Data type: switch

This will force the search to enter the block below, e.g. if the search session has 
begun at the task level, it will also search modules and routines below the task.
RAPID reference part 2, Functions and data types A-Z 81



GetNextSym  
 Function
Syntax

GetNextSym 
[ Object ’:=’ ] < variable or persistent (INOUT) of string > ’,’
[ Block ’:=’] <variable (VAR) of datapos> 
[’\’Recursive ] ’;’

A function with a return value of the data type bool.

Related information

Described in:
Define a symbol set in a search session Instructions - SetDataSearch
Get the value of a data object Instructions - GetDataVal
Set the value of a data object Instructions - SetDataVal
Set the value of many data objects Instructions - SetAllDataVal
The related data type datapos Data Types - datapos
82 RAPID reference part 2, Functions and data types A-Z



 GetTaskName
Function  
GetTaskName - Gets the name of current task
GetTaskName is used to get the identity of the current program task, with its name and 
number.

Example

VAR string mytaskname;
VAR num mytaskno;

mytaskname:=GetTaskName(\TaskNo:=mytaskno);

The current task name is stored in the variable mytaskname. The numerical iden-
tity of the task is stored in mytaskno.

Return value Data type: string

The name of the task in which the function is executed.

Arguments

GetTaskName  ( [\TaskNo] )

[\TaskNo] Data type: num

The identity of the task represented as a numeric value. The numbers returned 
will be in the range 1-10 where 1 is the identity of the main task.

Syntax

GetTaskName’(’
[ \TaskNo ’:=’ ] < variable (VAR) of num > ’)’

A function with a return value of the data type string.
RAPID reference part 2, Functions and data types A-Z 83



GetTaskName  
 Function
Related information

Described in:
Multitasking RAPID Overview - RAPID Summary 

Multitasking, Basic Characteristics 
Multitasking.
84 RAPID reference part 2, Functions and data types A-Z



 GetTime
Function  
GetTime - Reads the current time as a numeric value
GetTime is used to read a specified component of the current system time as a numeric 
value.

GetTime can be used to :

- have the program perform an action at a certain time
- perform certain activities on a weekday
- abstain from performing certain activities on the weekend
- respond to errors differently depending on the time of day.

Example

hour := GetTime(\Hour);

The current hour is stored in the variable hour.

Return valueData type: num

One of the four time components specified below.

Argument

GetTime ( [\WDay] | [\Hour] | [\Min] | [\Sec] )

[\WDay] Data type: switch

Return the current weekday.
Range: 1 to 7 (Monday to Sunday).

[\Hour] Data type: switch

Return the current hour.
Range: 0 to 23.

[\Min] Data type: switch

Return the current minute.
Range: 0 to 59.
RAPID reference part 2, Functions and data types A-Z 85



GetTime  
 Function
[\Sec] Data type: switch

Return the current second.
Range: 0 to 59.

One of the arguments must be specified, otherwise program execution stops with an 
error message.

Example

weekday := GetTime(\WDay);
hour := GetTime(\Hour);
IF weekday < 6 AND hour >6 AND hour < 16 THEN

production;
ELSE

maintenance;
ENDIF

If it is a weekday and the time is between 7:00 and 15:59 the robot performs pro-
duction. At all other times, the robot is in the maintenance mode.

Syntax

GetTime ’(’
[’\’ WDay ] 
| [ ’\’ Hour ]
| [ ’\’ Min ]
| [ ’\’ Sec ] ’)’ 

A function with a return value of the type num.

Related information

Described in:
Time and date instructions RAPID Summary - System & Time
Setting the system clock User’s Guide - System Parameters
86 RAPID reference part 2, Functions and data types A-Z



 GOutput
Function  
GOutput - Reads the value of a group of digital output signals
GOutput is used to read the current value of a group of digital output signals.

Example

IF GOutput(go2) = 5 THEN ... 

If the current value of the signal go2 is equal to 5, then ...

Return valueData type: num

The current value of the signal (a positive integer).

The values of each signal in the group are read and interpreted as an unsigned binary 
number. This binary number is then converted to an integer.

The value returned lies within a range that is dependent on the number of signals in the 
group.

No. of signals Return value No. of signals Return value
1 0 - 1 9 0 - 511
2 0 - 3 10 0- 1023
3 0 - 7 11 0 - 2047
4 0 - 15 12 0 - 4095
5 0 - 31 13 0 - 8191
6 0 - 63 14 0 - 16383
7 0 - 127 15 0 - 32767
8 0 - 255 16 0 - 65535

Arguments

GOutput (Signal)

Signal Data type: signalgo

The name of the signal group to be read.
RAPID reference part 2, Functions and data types A-Z 87



GOutput  
 Function
Syntax

GOutput ’(’
[ Signal ’:=’ ] < variable (VAR) of signalgo > ’)’

A function with a return value of data type num.

Related information

Described in:
Input/Output instructions RAPID Summary - Input and Output 

Signals
Input/Output functionality in general Motion and I/O Principles - I/O Princi-

ples
Configuration of I/O User’s Guide - System Parameters
88 RAPID reference part 2, Functions and data types A-Z



 IsMechUnitActive
Function  
IsMechUnitActive - Is mechanical unit active
IsMechUnitActive (Is Mechanical Unit Active) is used to check whether a mechanical 
unit is activated or not. 

Example

IF IsMechUnitActive(SpotWeldGun) CloseGun SpotWeldGun;

If the mechanical unit SpotWeldGun is active, the routine CloseGun will be 
invoked, where the gun is closed.

Return value Data type: bool

The function returns:

- TRUE, if the mechanical unit is active

- FALSE, if the mechanical unit is deactive

Arguments

IsMechUnitActive ( MechUnit )

MechUnit (Mechanical Unit) Data type: mecunit

The name of the mechanical unit.

Syntax

IsMechUnitActive ’(’
[MechUnit ’:=’ ] < variable (VAR) of mecunit> 
’)’

A function with a return value of the data type bool.
RAPID reference part 2, Functions and data types A-Z 89



IsMechUnitActive  
 Function
Related information

Described in:
Activating mechanical units Instructions - ActUnit
Deactivating mechanical units Instructions - DeactUnit
Mechanical units Data Types - mecunit
90 RAPID reference part 2, Functions and data types A-Z



 IsPers
Function  
IsPers - Is persistent
IsPers is used to test if a data object is a persistent variable or not.

Example

PROC procedure1 (INOUT num parameter1)
IF IsVar(parameter1) THEN

! For this call reference to a variable
...

ELSEIF IsPers(parameter1) THEN
! For this call reference to a persistent variable
...

ELSE
! Should not happen
EXIT;

ENDIF
ENDPROC

The procedure procedure1 will take different actions depending on whether the 
actual parameter parameter1 is a variable or a persistent variable.

Return value Data type: bool

TRUE if the tested actual INOUT parameter is a persistent variable. 
FALSE if the tested actual INOUT parameter is not a persistent variable.

Arguments

IsPers  (DatObj)

DatObj (Data Object) Data type: any type

The name of the formal INOUT parameter.

Syntax

IsPers’(’
[ DatObj ’:=’ ] < var or pers (INOUT) of any type > ’)’

A function with a return value of the data type bool.
RAPID reference part 2, Functions and data types A-Z 91



IsPers  
 Function
Related information

Described in:
Test if variable Function - IsVar
Types of parameters (access modes) RAPID Characteristics - Routines
92 RAPID reference part 2, Functions and data types A-Z



 IsSysId
Function  
IsSysId - Test system identity
IsSysId (System Identity) can be used to test the system identity.

Example

IF NOT IsSysId("6400-1234") THEN
ErrWrite "System identity fault","Faulty system identity for 

this program";
EXIT;

ENDIF

The program is made for a special robot system and can’t be used of another one.

Return value  Data type: bool

TRUE = The system identity is the same as specified in the test.

FALSE = The system identity is not the same as specified in the test.

Arguments

IsSysId  ( SystemId)

SystemId  Data type: string

The system identity.

Syntax

IsSysId ’(’
[ SystemId’:=’ ] < expression (IN) of string> ’)’

A function with a return value of the data type bool.’
RAPID reference part 2, Functions and data types A-Z 93



IsSysId  
 Function
94 RAPID reference part 2, Functions and data types A-Z



 IsVar
Function  
IsVar - Is variable
IsVar is used to test whether a data object is a variable or not.

Example

PROC procedure1 (INOUT num parameter1)
IF IsVAR(parameter1) THEN

! For this call reference to a variable
...

ELSEIF IsPers(parameter1) THEN
! For this call reference to a persistent variable
...

ELSE
! Should not happen
EXIT;

ENDIF
ENDPROC

The procedure procedure1 will take different actions, depending on whether the 
actual parameter parameter1 is a variable or a persistent variable.

Return value Data type: bool

TRUE if the tested actual INOUT parameter is a variable. 
FALSE if the tested actual INOUT parameter is not a variable.

Arguments

IsVar  (DatObj)

DatObj (Data Object) Data type: any type

The name of the formal INOUT parameter.

Syntax

IsVar’(’
[ DatObj ’:=’ ] < var or pers (INOUT) of any type > ’)’

A function with a return value of the data type bool.
RAPID reference part 2, Functions and data types A-Z 95



IsVar  
 Function
Related information

Described in:
Test if persistent Function - IsPers
Types of parameters (access modes) RAPID Characteristics - Routines
96 RAPID reference part 2, Functions and data types A-Z



 MaxRobSpeed
Function  
MaxRobSpeed - Maximum robot speed
MaxRobSpeed (Maximum Robot Speed) returns the maximum TCP speed for the used 
robot type.

Example

TPWrite “Max. TCP speed in mm/s for my robot = “ \Num:=MaxRobSpeed();

The message “Max. TCP speed in mm/s for my robot = 5000” is written on the 
Teach Pendant.

Return value Data type: num

Return the max. TCP speed in mm/s for the used robot type and normal pratical TCP 
values.

If use of extreme big TCP values in tool frame, create own speeddata with
bigger TCP speed than returned by MaxRobSpeed.

Syntax

MaxRobSpeed ’(’ ’)’

A function with a return value of the data type num.

Related information

Described in:
Definition of velocity Data Types - speeddata
Definition of maximum velocity Instructions - VelSet
RAPID reference part 2, Functions and data types A-Z 97



MaxRobSpeed  
 Function
98 RAPID reference part 2, Functions and data types A-Z



 MirPos
Function  
MirPos - Mirroring of a position
MirPos (Mirror Position) is used to mirror the translation and rotation parts of a posi-
tion.

Example

CONST robtarget p1;
VAR robtarget p2;
PERS wobjdata mirror;
.
.
p2 := MirPos(p1, mirror);

p1 is a robtarget storing a position of the robot and an orientation of the tool. This 
position is mirrored in the xy-plane of the frame defined by mirror, relative to 
the world coordinate system. The result is new robtarget data, which is stored in 
p2.

Return value Data type: robtarget

The new position which is the mirrored position of the input position.

Arguments

MirPos  (Point  MirPlane  [\WObj]  [\MirY])

Point Data type: robtarget

The input robot position. The orientation part of this position defines the current 
orientation of the tool coordinate system.

MirPlane (Mirror Plane) Data type: wobjdata

The work object data defining the mirror plane. The mirror plane is the xy-plane 
of the object frame defined in MirPlane. The location of the object frame is 
defined relative to the user frame, also defined in MirPlane, which in turn is 
defined relative to the world frame.

[\WObj] (Work Object) Data type: wobjdata

The work object data defining the object frame, and user frame, relative to which 
the input position, Point, is defined. If this argument is left out, the position is 
defined relative to the World coordinate system. 
Note. If the position is created with a work object active, this work object must 
be referred to in the argument.
RAPID reference part 2, Functions and data types A-Z 99



MirPos  
 Function
[\MirY] (Mirror Y) Data type: switch

If this switch is left out, which is the default rule, the tool frame will be mirrored 
as regards the x-axis and the z-axis. If the switch is specified, the tool frame will 
be mirrored as regards the y-axis and the z-axis.

Limitations

No recalculation is done of the robot configuration part of the input robtarget data.

Syntax

MirPos’(’
[ Point ’:=’ ] < expression (IN) of robtarget>’,’
[MirPlane ’:=’] <expression (IN) of wobjdata> ’,’
[’\’WObj ’:=’ <expression (IN) of wobjdata> ]
[’\’MirY ]’)’

A function with a return value of the data type robtarget.

Related information

Described in:
Mathematical instructions and functions RAPID Summary - Mathematics
100 RAPID reference part 2, Functions and data types A-Z



 ModTime
Function  
ModTime - Get time of load for a loaded module
ModTime (Module Time) is used to retrieve the time of loading a specified module. The 
module is specified by its name and must be in the task memory. The time is measured 
in secs since 00:00:00 GMT, Jan 1 1970. The time is returned as a num.

Example

MODULE mymod
VAR num mytime;
PROC printMyTime()

mytime := ModTime("mymod");
TPWrite "My time is "+NumToStr(mytime,0);

ENDPROC

Return value Data type: num

The time measured in secs since 00:00:00 GMT, Jan 1 1970.

Arguments

ModTime ( Object )

Object Data type: string

The name of the module. 

Program execution

This function return a numeric that specify the time when the module was loaded.
RAPID reference part 2, Functions and data types A-Z 101



ModTime  
 Function
Example

This is a complete example that implements an “update if newer” service.

MODULE updmod
PROC callrout()

Load "HOME:/mymod.mod";
WHILE TRUE DO

! Call some routine in mymod
mymodrout;
IF FileTime("HOME:/mymod.mod" \ModifyTime)
> ModTime("mymod") THEN
UnLoad "HOME:/mymod.mod";
Load "HOME:/mymod.mod";
ENDIF

ENDWHILE
ENDPROC

ENDMODULE

This program reloads a module if there is a newer one at the source. It uses the Mod-
Time to retrieve the latest loading time for the specified module, and compares it to the 
FileTime\ModifyTime at the source. Then, if the source is newer, the program unloads 
and loads the module again.

Syntax

ModTime ’(’
[ Object ’:=’ ] < expression (IN) of string>’)’

A function with a return value of the data type num.

Related information

Described in:
Retrieve time info. about a file Functions - FileTime
102 RAPID reference part 2, Functions and data types A-Z



 NOrient
Function  
NOrient - Normalise orientation
NOrient (Normalise Orientation) is used to normalise unnormalised orientation 
(quaternion).

Description

An orientation must be normalised, i.e. the sum of the squares must
equal 1:

If the orientation is slightly unnormalised, it is possible to normalise it. 
The normalisation error is the absolute value of the sum of the squares of the orienta-
tion components.
The orientation is considered to be slightly unnormalised if the normalisation error is 
greater then 0.00001 and less then 0.1. If the normalisation error is greater then 0.1 the 
orient is unusable.

normerr > 0.1 Unusable
normerr > 0.00001 AND err <= 0.1 Slightly unnormalised
normerr <= 0.00001 Normalised

Example

We have a slightly unnormalised position ( 0.707170, 0, 0, 0.707170 )

VAR orient unnormorient := [0.707170, 0, 0, 0.707170];
VAR orient normorient;
.
.
normorient := NOrient(unnormorient);

The normalisation of the orientation ( 0.707170, 0, 0, 0.707170 ) becomes ( 0.707107, 
0, 0, 0.707107 ).

q1
2 q2

2 q3
2 q4

2+ + + 1=

ABS q1
2 q2

2 q3
2 q4

2+ + + 1–( ) normerr=

ABS 0.7071702 02 02 0.7071702+ + + 1–( ) 0.0000894=

0.0000894 0.00001 unnormalized⇒>
RAPID reference part 2, Functions and data types A-Z 103



NOrient  
 Function
Return value Data type: orient

The normalised orientation.

Arguments

NOrient  (Rotation)

Orient Data type: orient

The orientation to be normalised.

Syntax

NOrient’(’
[Rotation ’:=’] <expression (IN) of orient>
’)’

A function with a return value of the data type orient.

Related information

Described in:
Mathematical instructions and functions RAPID Summary - Mathematics
104 RAPID reference part 2, Functions and data types A-Z



 NumToStr
Function  
NumToStr - Converts numeric value to string
NumToStr (Numeric To String) is used to convert a numeric value to a string.

Example

VAR string str;

str := NumToStr(0.38521,3);

The variable str is given the value "0.385".

reg1 := 0.38521

str := NumToStr(reg1, 2\Exp);

The variable str is given the value "3.85E-01".

Return value Data type: string

The numeric value converted to a string with the specified number of decimals, with 
exponent if so requested. The numeric value is rounded if necessary. The decimal point 
is suppressed if no decimals are included.

Arguments

NumToStr  (Val Dec [\Exp])

Val (Value) Data type: num

The numeric value to be converted.

Dec (Decimals) Data type: num

Number of decimals. The number of decimals must not be negative or greater 
than the available precision for numeric values.

[\Exp] (Exponent) Data type: switch

To use exponent.
RAPID reference part 2, Functions and data types A-Z 105



NumToStr  
 Function
Syntax

NumToStr’(’
[ Val ’:=’ ] <expression (IN) of num> ’,’
[ Dec ’:=’ ] <expression (IN) of num>
[ \Exp ]
’)’

A function with a return value of the data type string.

Related information

Described in:
String functions RAPID Summary - String Functions
Definition of string Data Types - string
String values Basic Characteristics -

Basic Elements
106 RAPID reference part 2, Functions and data types A-Z



 Offs
Function  
Offs - Displaces a robot position
Offs is used to add an offset to a robot position.

Examples

MoveL Offs(p2, 0, 0, 10), v1000, z50, tool1;

The robot is moved to a point 10 mm from the position p2 (in the z-direction).

p1 := Offs (p1, 5, 10, 15);

The robot position p1 is displaced 5 mm in the x-direction, 10 mm in the y-direc-
tion and 15 mm in the z-direction.

Return value Data type: robtarget

The displaced position data.

Arguments

Offs (Point XOffset YOffset ZOffset)

Point Data type: robtarget

The position data to be displaced.

XOffset Data type: num

The displacement in the x-direction.

YOffset Data type: num

The displacement in the y-direction.

ZOffset Data type: num

The displacement in the z-direction.
RAPID reference part 2, Functions and data types A-Z 107



Offs  
 Function
Example

PROC pallet (num row, num column, num distance, PERS tooldata tool, 
PERS wobjdata wobj)

VAR robtarget palletpos:=[[0, 0, 0], [1, 0, 0, 0], [0, 0, 0, 0], 
[9E9, 9E9, 9E9, 9E9, 9E9, 9E9]];

palettpos := Offs (palettpos, (row-1)*distance, (column-1)*distance, 0);
MoveL palettpos, v100, fine, tool\WObj:=wobj;

ENDPROC

A routine for picking parts from a pallet is made. Each pallet is defined as a work 
object (see Figure 4). The part to be picked (row and column) and the distance 
between the parts are given as input parameters. 
Incrementing the row and column index is performed outside the routine.

Figure 4  The position and orientation of the pallet is specified by defining a work object.

Syntax

Offs ’(’
[Point ’:=’] <expression (IN) of robtarget> ’,’
[XOffset ’:=’] <expression (IN) of num> ’,’
[YOffset ’:=’] <expression (IN) of num> ’,’
[ZOffset ’:=’] <expression (IN) of num> ’)’

A function with a return value of the data type robtarget.

Related information

Described in:
Position data Data Types - robtarget

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

Y-axis

X-axis

Columns

Rows
108 RAPID reference part 2, Functions and data types A-Z



 OpMode
Function  
OpMode - Read the operating mode
OpMode (Operating Mode) is used to read the current operating mode of the system.

Example

TEST OpMode()
CASE OP_AUTO:

...
CASE OP_MAN_PROG:

...
CASE OP_MAN_TEST:

...
DEFAULT:

...
ENDTEST

Different program sections are executed depending on the current operating mode.

Return value Data type: symnum

The current operating mode as defined in the table below.

Syntax

OpMode’(’ ’)’

A function with a return value of the data type symnum.

Return value Symbolic constant Comment

0 OP_UNDEF Undefined operating mode

1 OP_AUTO Automatic operating mode

2 OP_MAN_PROG Manual operating mode max. 250 mm/s

3 OP_MAN_TEST Manual operating mode full speed, 100 %
RAPID reference part 2, Functions and data types A-Z 109



OpMode  
 Function
Related information

Described in:
Different operating modes User’s Guide - Starting up 
Reading running mode Functions - RunMode
110 RAPID reference part 2, Functions and data types A-Z



 OrientZYX
Function  
OrientZYX - Builds an orient from euler angles
OrientZYX (Orient from Euler ZYX angles) is used to build an orient type variable out 
of Euler angles.

Example

VAR num anglex;
VAR num angley;
VAR num anglez;
VAR pose object;
.
object.rot := OrientZYX(anglez, angley, anglex)

Return value Data type: orient

The orientation made from the Euler angles.

The rotations will be performed in the following order:
-rotation around the z axis, 
-rotation around the new y axis
-rotation around the new x axis.

Arguments

OrientZYX  (ZAngle  YAngle  XAngle)

ZAngle Data type: num

The rotation, in degrees, around the Z axis. 

YAngle Data type: num

The rotation, in degrees, around the Y axis. 

XAngle Data type: num

The rotation, in degrees, around the X axis. 

The rotations will be performed in the following order:
-rotation around the z axis, 
-rotation around the new y axis
-rotation around the new x axis.
RAPID reference part 2, Functions and data types A-Z 111



OrientZYX  
 Function
Syntax

OrientZYX’(’
[ZAngle ’:=’] <expression (IN) of num> ’,’
[YAngle ’:=’] <expression (IN) of num> ’,’
[XAngle ’:=’] <expression (IN) of num>
’)’

A function with a return value of the data type orient.

Related information

Described in:
Mathematical instructions and functions RAPID Summary - Mathematics
112 RAPID reference part 2, Functions and data types A-Z



 ORobT
Function  
ORobT - Removes a program displacement from a position
ORobT (Object Robot Target) is used to transform a robot position from the program 
displacement coordinate system to the object coordinate system and/or to remove an 
offset for the external axes.

Example

VAR robtarget p10;
VAR robtarget p11;

p10 := CRobT();
p11 := ORobT(p10);

The current positions of the robot and the external axes are stored in p10 and p11. 
The values stored in p10 are related to the ProgDisp/ExtOffs coordinate system. 
The values stored in p11 are related to the object coordinate system without any 
offset on the external axes.

Return valueData type: robtarget

The transformed position data.

Arguments

ORobT (OrgPoint [\InPDisp] | [\InEOffs])

OrgPoint (Original Point) Data type: robtarget

The original point to be transformed.

[\InPDisp] (In Program Displacement) Data type: switch

Returns the TCP position in the ProgDisp coordinate system, i.e. removes exter-
nal axes offset only.

[\InEOffs] (In External Offset) Data type: switch

Returns the external axes in the offset coordinate system, i.e. removes program 
displacement for the robot only.
RAPID reference part 2, Functions and data types A-Z 113



ORobT  
 Function
Examples

p10 := ORobT(p10 \InEOffs );

The ORobT function will remove any program displacement that is active, leav-
ing the TCP position relative to the object coordinate system. The external axes 
will remain in the offset coordinate system.

p10 := ORobT(p10 \InPDisp );

The ORobT function will remove any offset of the external axes. The TCP posi-
tion will remain in the ProgDisp coordinate system.

Syntax

ORobT ’(’
[ OrgPoint ’:=’ ] < expression (IN) of robtarget>
[’\’InPDisp] | [’\’InEOffs]’)’

A function with a return value of the data type robtarget.

Related information

Described in:
Definition of program displacement for Instructions - PDispOn, PDispSet the 

robot
Definition of offset for external axes Instructions - EOffsOn, EOffsSet
Coordinate systems Motion and I/O Principles - Coordinate 

Systems
114 RAPID reference part 2, Functions and data types A-Z



 PoseInv
Function  
PoseInv - Inverts the pose
PoseInv (Pose Invert) calculates the reverse transformation of a pose.

Example

Pose1 represents the coordinates of Frame1 related to Frame0. 
The transformation giving the coordinates of Frame0 related to Frame1 is obtained by 
the reverse transformation:

VAR pose pose1;
VAR pose pose2;
.
.
pose2 := PoseInv(pose1);

Return value Data type: pose

The value of the reverse pose.

Arguments

PoseInv  (Pose)

Pose Data type: pose

The pose to invert. 

x0

y0

z0

Frame0 x1
y1

z1

Frame1

Pose1

Pose2
RAPID reference part 2, Functions and data types A-Z 115



PoseInv  
 Function
Syntax

PoseInv’(’
[Pose ’:=’] <expression (IN) of pose>
’)’

A function with a return value of the data type pose.

Related information

Described in:
Mathematical instructions and functions RAPID Summary - Mathematics
116 RAPID reference part 2, Functions and data types A-Z



 PoseMult
Function  
PoseMult - Multiplies pose data
PoseMult (Pose Multiply) is used to calculate the product of two frame transforma-
tions. A typical use is to calculate a new frame as the result of a displacement acting 
on an original frame.

Example

pose1 represents the coordinates of Frame1 related to Frame0. 
pose2 represents the coordinates of Frame2 related to Frame1.

The transformation giving pose3, the coordinates of Frame2 related to Frame0, is 
obtained by the product of the two transformations:

VAR pose pose1;
VAR pose pose2;
VAR pose pose3;
.
.
pose3 := PoseMult(pose1, pose2);

Return value Data type: pose

The value of the product of the two poses.

Arguments

PoseMult  (Pose1  Pose2)

Pose1 Data type: pose

The first pose. 

x0

y0

z0

Frame0 x1

y1

z1

x2
y2

z2
Frame1

Frame2

pose1
pose2

pose3
RAPID reference part 2, Functions and data types A-Z 117



PoseMult  
 Function
Pose2 Data type: pose

The second pose. 

Syntax

PoseMult’(’
[Pose1 ’:=’] <expression (IN) of pose> ’,’
[Pose2 ’:=’] <expression (IN) of pose>
’)’

A function with a return value of the data type pose.

Related information

Described in:
Mathematical instructions and functions RAPID Summary - Mathematics
118 RAPID reference part 2, Functions and data types A-Z



 PoseVect
Function  
PoseVect - Applies a transformation to a vector
PoseVect (Pose Vector) is used to calculate the product of a pose and a vector. 
It is typically used to calculate a vector as the result of the effect of a displacement on 
an original vector.

Example

pose1 represents the coordinates of Frame1 related to Frame0. 
pos1 is a vector related to Frame1.

The corresponding vector related to Frame0 is obtained by the product:

VAR pose pose1;
VAR pos pos1;
VAR pos pos2;
.
.
pos2:= PoseVect(pose1, pos1);

Return valueData type: pos

The value of the product of the pose and the original pos.

Arguments

PoseVect  (Pose  Pos)

Pose Data type: pose

The transformation to be applied. 

x0

y0

z0

Frame0

x1

y1

z1

Frame1
pose1

pos1pos2
RAPID reference part 2, Functions and data types A-Z 119



PoseVect  
 Function
Pos Data type: pos

The pos to be transformed. 

Syntax

PoseVect’(’
[Pose ’:=’] <expression (IN) of pose> ’,’
[Pos ’:=’] <expression (IN) of pos>
’)’

A function with a return value of the data type pos.

Related information

Described in:
Mathematical instructions and functions RAPID Summary - Mathematics
120 RAPID reference part 2, Functions and data types A-Z



 Pow
Function  
Pow - Calculates the power of a value
Pow (Power) is used to calculate the exponential value in any base.

Example

VAR num x;
VAR num y
VAR num reg1;
.
reg1:= Pow(x, y);

reg1 is assigned the value xy.

Return value Data type: num

The value of the base x raised to the power of the exponent y ( xy ).

Arguments

Pow  (Base Exponent)

Base Data type: num

The base argument value.

Exponent Data type: num

The exponent argument value.

Limitations

The execution of the function xy will give an error if:

. x < 0 and y is not an integer;

. x = 0 and y < 0.

Syntax

Pow’(’
[Base ’:=’] <expression (IN) of num> ’,’
[Exponent ’:=’] <expression (IN) of num>
’)’
RAPID reference part 2, Functions and data types A-Z 121



Pow  
 Function
A function with a return value of the data type num.

Related information

Described in:
Mathematical instructions and functions RAPID Summary - Mathematics
122 RAPID reference part 2, Functions and data types A-Z



 Present
Function  
Present - Tests if an optional parameter is used
Present is used to test if an optional argument has been used when calling a routine.

An optional parameter may not be used if it was not specified when calling the routine. 
This function can be used to test if a parameter has been specified, in order to prevent 
errors from occurring.

Example

PROC feeder (\switch on | \switch off)

IF Present (on) Set do1;
IF Present (off) Reset do1;

ENDPROC

The output do1, which controls a feeder, is set or reset depending on the argu-
ment used when calling the routine.

Return value Data type: bool

TRUE = The parameter value or a switch has been defined when calling the routine.

FALSE = The parameter value or a switch has not been defined.

Arguments

Present (OptPar)

OptPar (Optional Parameter) Data type: Any type

The name of the optional parameter to be tested.
RAPID reference part 2, Functions and data types A-Z 123



Present  
 Function
Example

PROC glue (\switch on, num glueflow, robtarget topoint, speeddata speed,
zonedata zone, PERS tooldata tool, \PERS wobjdata wobj)

IF Present (on) PulseDO glue_on;
SetAO gluesignal, glueflow;
IF Present (wobj) THEN

MoveL topoint, speed, zone, tool \WObj=wobj;
ELSE

MoveL topoint, speed, zone, tool;
ENDIF

ENDPROC

A glue routine is made. If the argument \on is specified when calling the routine, 
a pulse is generated on the signal glue_on. The robot then sets an analog output 
gluesignal, which controls the glue gun, and moves to the end position. As the 
wobj parameter is optional, different MoveL instructions are used depending on 
whether this argument is used or not.

Syntax

Present ’(’
[OptPar’:=’] <reference (REF) of any type> ’)’

A REF parameter requires, in this case, the optional parameter name.

A function with a return value of the data type bool.

Related information

Described in:
Routine parameters Basic Characteristics - Routines
124 RAPID reference part 2, Functions and data types A-Z



 ReadBin
Function Advanced functions
ReadBin - Reads a byte from a file or serial channel
ReadBin (Read Binary) is used to read a byte (8 bits) from a file or serial channel.

This function works on both binary and character-based files or serial channels.

Example

VAR num character;
VAR iodev inchannel;
...
Open "com2:", inchannel\Bin;
character := ReadBin(inchannel);

A byte is read from the binary serial channel inchannel.

Return valueData type: num

A byte (8 bits) is read from a specified file or serial channel. This byte is converted to 
the corresponding positive numeric value and returned as a num data type. 
If a file is empty (end of file), the number -1 is returned.

Arguments

ReadBin (IODevice [\Time])

IODevice Data type: iodev

The name (reference) of the file or serial channel to be read.

[\Time] Data type: num

The max. time for the reading operation (timeout) in seconds. If this argument is 
not specified, the max. time is set to 60 seconds.

If this time runs out before the reading operation is finished, the error handler 
will be called with the error code ERR_DEV_MAXTIME. If there is no error 
handler, the execution will be stopped.

The timeout function is in use also during program stop and will be noticed in 
the RAPID program at program start.

Program execution

Program execution waits until a byte (8 bits) can be read from the file or serial channel. 
RAPID reference part 2, Functions and data types A-Z 125



ReadBin  
Advanced functions Function
Example

VAR num bindata;
VAR iodev file;

Open “HOME:/myfile.bin”, file \Read \Bin;
bindata := ReadBin(file);
WHILE bindata <> EOF_BIN DO

TPWrite ByteToStr(bindata\Char);
bindata := ReadBin(file);

ENDWHILE 

Read the contents of a binary file myfile.bin from the beginning to the end and 
displays the received binary data converted to chars on the teach pendant (one 
char on each line).

Limitations

The function can only be used for files and serial channels that have been opened with 
read access (\Read for character based files, \Bin or \Append \Bin for binary files).

Error handling

If an error occurs during reading, the system variable ERRNO is set to 
ERR_FILEACC.

If time out before the read operation is finished, the system variable ERRNO is set to 
ERR_DEV_MAXTIME.

These errors can then be dealt with by the error handler.

Predefined data

The constant EOF_BIN can be used to stop reading at the end of the file.

CONST num EOF_BIN := -1;

Syntax

ReadBin’(’
[IODevice ’:=’] <variable (VAR) of iodev>
[’\’Time’:=’ <expression (IN) of num>]’)’

A function with a return value of the type num.
126 RAPID reference part 2, Functions and data types A-Z



 ReadBin
Function Advanced functions
Related information

Described in:
Opening (etc.) files or serial channels RAPID Summary - Communication
Convert a byte to a string data Functions - ByteToStr
RAPID reference part 2, Functions and data types A-Z 127



ReadBin  
Advanced functions Function
128 RAPID reference part 2, Functions and data types A-Z



 ReadMotor
Function  
ReadMotor - Reads the current motor angles
ReadMotor is used to read the current angles of the different motors of the robot and 
external axes. The primary use of this function is in the calibration procedure of the 
robot.

Example

VAR num motor_angle2;

motor_angle2 := ReadMotor(2);

The current motor angle of the second axis of the robot is stored in 
motor_angle2. 

Return value Data type: num

The current motor angle in radians of the stated axis of the robot or external axes.

Arguments

ReadMotor [\MecUnit ] Axis

MecUnit (Mechanical Unit) Data type: mecunit

The name of the mechanical unit for which an axis is to be read. If this argument 
is omitted, the axis for the robot is read. (Note, in this release only robot is per-
mitted for this argument).

Axis Data type: num

The number of the axis to be read (1 - 6).

Program execution

The motor angle returned represents the current position in radians for the motor and 
independently of any calibration offset. The value is not related to a fix position of the 
robot, only to the resolver internal zero position, i.e. normally the resolver zero posi-
tion closest to the calibration position (the difference between the resolver zero posi-
tion and the calibration position is the calibration offset value). The value represents 
the full movement of each axis, although this may be several turns.
RAPID reference part 2, Functions and data types A-Z 129



ReadMotor  
 Function
Example

VAR num motor_angle3;

motor_angle3 := ReadMotor(\MecUnit:=robot, 3);

The current motor angle of the third axis of the robot is stored in motor_angle3.

Syntax

ReadMotor’(’
[’\’MecUnit ’:=’ < variable (VAR) of mecunit>’,’]
[Axis ’:=’ ] < expression (IN) of num>
’)’

A function with a return value of the data type num.

Related information

Described in:
Reading the current joint angle Functions - CJointT
130 RAPID reference part 2, Functions and data types A-Z



 ReadNum
Function Advanced functions
ReadNum - Reads a number from a file or serial channel
ReadNum (Read Numeric) is used to read a number from a character-based file or serial 
channel.

Example

VAR iodev infile;
...
Open "HOME:/file.doc", infile\Read;
reg1 := ReadNum(infile);

Reg1 is assigned a number read from the file file.doc.

Return valueData type: num

The numeric value read from a specified file or serial channel. 
If the file is empty (end of file), the number 9.999E36 is returned.

Arguments

ReadNum (IODevice [\Delim] [\Time])

IODevice Data type: iodev

The name (reference) of the file or serial channel to be read.

[\Delim] (Delimiters) Data type: string

A string containing the delimiters to use when parsing a line in the file or serial 
channel. By default (without \Delim), the file is read line by line and the line-feed 
character (\0A) is the only delimiter considered by the parsing. When the \Delim 
argument is used, any character in the specified string argument will be consid-
ered to determine the significant part of the line.

When using the argument \Delim, the control system always adds the characters 
carriage return (\0D) and line-feed (\0A) to the delimiters specified by the user.

To specify non-alphanumeric characters, use \xx, where xx is the hexadecimal 
representation of the ASCII code of the character (example: TAB is specified by 
\09).
RAPID reference part 2, Functions and data types A-Z 131



ReadNum  
Advanced functions Function
[\Time] Data type: num

The max. time for the reading operation (timeout) in seconds. If this argument is 
not specified, the max. time is set to 60 seconds.

If this time runs out before the read operation is finished, the error handler will 
be called with the error code ERR_DEV_MAXTIME. If there is no error handler, 
the execution will be stopped.

The timeout function is also in use during program stop and will be noticed in the 
RAPID program at program start.

Program execution

Starting at the current file position, the function reads and discards any heading delim-
iters. A heading delimiter without the argument \Delim is a line-feed character. Head-
ing delimiters with the argument \Delim are any characters specified in the \Delim 
argument plus carriage return and line-feed characters. It then reads everything up to 
and including the next delimiter character (will be discarded), but not more than 80 
characters. If the significant part exceeds 80 characters, the remainder of the characters 
will be read on the next reading. 

The string that is read is then converted to a numeric value; e.g. “234.4” is converted 
to the numeric value 234.4.

Example

reg1 := ReadNum(infile\Delim:="\09 ");
IF reg1 > EOF_NUM THEN

TPWrite "The file is empty";
...

Reads a number in a line where numbers are separated by TAB (“\09”) or 
SPACE (“ “) characters.
Before using the number read from the file, a check is performed to make sure 
that the file is not empty.

Limitations

The function can only be used for character based files that have been opened for read-
ing.
132 RAPID reference part 2, Functions and data types A-Z



 ReadNum
Function Advanced functions
Error handling

If an access error occurs during reading, the system variable ERRNO is set to 
ERR_FILEACC. 

If there is an attempt to read non-numeric data, the system variable ERRNO is set to 
ERR_RCVDATA. 

If time out before the read operation is finished, the system variable ERRNO is set to 
ERR_DEV_MAXTIME.

These errors can then be dealt with by the error handler.

Predefined data

The constant EOF_NUM can be used to stop reading, at the end of the file.

CONST num EOF_NUM := 9.998E36;

Syntax

ReadNum ’(’
[IODevice ’:=’]<variable (VAR) of iodev>
[‘\’Delim’:=’<expression (IN) of string>]
[’\’Time’:=’<expression (IN) of num>]’)’

A function with a return value of the type num.

Related information

Described in:
Opening (etc.) files or serial channels RAPID Summary - Communication
RAPID reference part 2, Functions and data types A-Z 133



ReadNum  
Advanced functions Function
134 RAPID reference part 2, Functions and data types A-Z



 ReadStr
Function Advanced functions
ReadStr - Reads a string from a file or serial channel
ReadStr (Read String) is used to read a string from a character-based file or serial chan-
nel.

Example

VAR string text;
VAR iodev infile;
...
Open "HOME:/file.doc", infile\Read;
text := ReadStr(infile);

Text is assigned a string read from the file file.doc.

Return valueData type: string

The string read from the specified file or serial channel. 
If the file is empty (end of file), the string "EOF" is returned.

Arguments

ReadStr (IODevice [\Delim] [\RemoveCR] [\DiscardHeaders]
 [\Time])

IODevice Data type: iodev

The name (reference) of the file or serial channel to be read.

[\Delim] (Delimiters) Data type: string

A string containing the delimiters to use when parsing a line in the file or serial 
channel. By default the file is read line by line and the line-feed character (\0A) 
is the only delimiter considered by the parsing. When the \Delim argument is 
used, any character in the specified string argument plus by default line-feed 
character will be considered to determine the significant part of the line.

To specify non-alphanumeric characters, use \xx, where xx is the hexadecimal 
representation of the ASCII code of the character (example: TAB is specified by 
\09).
RAPID reference part 2, Functions and data types A-Z 135



ReadStr  
Advanced functions Function
[\RemoveCR] Data type: switch

A switch used to remove the trailing carriage return character when reading PC 
files. In PC files, a new line is specified by carriage return and line feed (CRLF). 
When reading a line in such files, the carriage return character is by default read 
into the return string. When using this argument, the carriage return character will 
be read from the file but not included in the return string.

[\DiscardHeaders] Data type: switch

This argument specifies whether the heading delimiters (specified in \Delim plus 
default line-feed) are skipped or not before transferring data to the return string. 
By default, if the first character at the current file position is a delimiter, it is read 
but not transferred to the return string, the line parsing is stopped and the return 
will be an empty string. If this argument is used, all delimiters included in the line 
will be read from the file but discarded, and the return string will contain the data 
starting at the first non-delimiter character in the line.

[\Time] Data type: num

The max. time for the reading operation (timeout) in seconds. If this argument is 
not specified, the max. time is set to 60 seconds.

If this time runs out before the read operation is finished, the error handler will 
be called with the error code ERR_DEV_MAXTIME. If there is no error handler, 
the execution will be stopped.

The timeout function is in use also during program stop and will be noticed in the 
RAPID program at program start.

Program execution

Starting at the current file position, if the \DiscardHeaders argument is used, the func-
tion reads and discards any heading delimiters (line-feed characters and any character 
specified in the \Delim argument). In all cases, it then reads everything up to the next 
delimiter character, but not more than 80 characters. If the significant part exceeds 80 
characters, the remainder of the characters will be read on the next reading. The delim-
iter that caused the parsing to stop is read from the file but not transferred to the return 
string. If the last character in the string is a carriage return character and the \RemoveCR 
argument is used, this character will be removed from the string.
136 RAPID reference part 2, Functions and data types A-Z



 ReadStr
Function Advanced functions
Example 1

text := ReadStr(infile);
IF text = EOF THEN

TPWrite "The file is empty";
...

Before using the string read from the file, a check is performed to make sure that 
the file is not empty.

Example 2

Consider a file containing:
<LF><SPACE><TAB>Hello<SPACE><SPACE>World<CR><LF>

text := ReadStr(infile);

text will be an empty string: the first character in the file is the default <LF> 
delimiter.

text := ReadStr(infile\DiscardHeaders);

text will contain <SPACE><TAB>Hello<SPACE><SPACE>World<CR>: the 
first character in the file, the default <LF> delimiter, is discarded.

text := ReadStr(infile\RemoveCR\DiscardHeaders);

text will contain <SPACE><TAB>Hello<SPACE><SPACE>World: the first 
character in the file, the default <LF> delimiter, is discarded; the final carriage 
return character is removed

text := ReadStr(infile\Delim:=”  \09”\RemoveCR\DiscardHeaders);

text will contain “Hello”: the first characters in the file that match either the 
default <LF> delimiter or the character set defined by \Delim (space and tab) are 
discarded. Data is then transferred up to the first delimiter that is read from the 
file but not transferred into the string. A new invocation of the same statement 
will return “World”.
RAPID reference part 2, Functions and data types A-Z 137



ReadStr  
Advanced functions Function
Example 3

Consider a file containing:
<CR><LF>Hello<CR><LF>

text := ReadStr(infile);

text will contain the <CR> (\0d) character: <CR> and <LF> characters are read 
from the file, but only <CR> is transferred to the string. A new invocation of the 
same statement will return “Hello\0d”.

text := ReadStr(infile\RemoveCR);

text will contain an empty string: <CR> and <LF> characters are read from the 
file; <CR> is transferred but removed from the string. A new invocation of the 
same statement will return “Hello”.

text := ReadStr(infile\Delim:=”\0d”);

text will contain an empty string: <CR> is read from the file but not transferred 
to the return string. A new invocation of the same instruction will return an empty 
string again: <LF> is read from the file but not transferred to the return string. 

text := ReadStr(infile\Delim:=”\0d”\DiscardHeaders);

text will contain “Hello”. A new invocation of the same instruction will return 
“EOF” (end of file).

Limitations

The function can only be used for files or serial channels that have been opened for 
reading in a character-based mode.

Error handling

If an error occurs during reading, the system variable ERRNO is set to 
ERR_FILEACC. 

If timeout before the read operation is finished, the system variable ERRNO is set to 
ERR_DEV_MAXTIME.

These errors can then be dealt with by the error handler.
138 RAPID reference part 2, Functions and data types A-Z



 ReadStr
Function Advanced functions
Predefined data

The constant EOF can be used to check if the file was empty when trying to read from 
the file or to stop reading at the end of the file.

CONST string EOF := "EOF";

Syntax

ReadStr ’(’
[IODevice ’:=’] <variable (VAR) of iodev>
[‘\’Delim’:=’<expression (IN) of string>]
[‘\’RemoveCR]
[‘\’DiscardHeaders]
[’\’Time’:=’ <expression (IN) of num>]’)’

A function with a return value of the type string.

Related information

Described in:
Opening (etc.) files or serial channels RAPID Summary - Communication
RAPID reference part 2, Functions and data types A-Z 139



ReadStr  
Advanced functions Function
140 RAPID reference part 2, Functions and data types A-Z



 ReadStrBin
Function Advanced functions
ReadStrBin - Reads a string from a binary serial channel or 
file

ReadStrBin (Read String Binary) is used to read a string from a binary serial channel 
or file.

Example

VAR iodev channel2;
VAR string text;
...
Open “com2:”, channel2 \Bin;
text := ReadStrBin (channel2, 10);

Text is assigned a 10 characters text string read from the serial channel referred 
to by channel2.

Return valueData type: string

The text string read from the specified serial channel or file. If the file is empty (end of 
file), the string "EOF" is returned.

Arguments

ReadStrBin (IODevice NoOfChars [\Time])

IODevice Data type: iodev

The name (reference) of the binary serial channel or file to be read.

NoOfChars Data type: num

The number of characters to be read from the binary serial channel or file.

[\Time] Data type: num

The max. time for the reading operation (timeout) in seconds. If this argument is 
not specified, the max. time is set to 60 seconds.

If this time runs out before the read operation is finished, the error handler will 
be called with the error code ERR_DEV_MAXTIME. If there is no error han-
dler, the execution will be stopped.

The timeout function is in use also during program stop and will be noticed in 
the RAPID program at program start.
RAPID reference part 2, Functions and data types A-Z 141



ReadStrBin  
Advanced functions Function
Program execution

The function reads the specified number of characters from the binary serial channel or 
file.

Example

text := ReadStrBin(infile,20);
IF text = EOF THEN

TPWrite "The file is empty";

Before using the string read from the file, a check is performed to make sure that 
the file is not empty.

Limitations

The function can only be used for serial channels or files that have been opened for 
reading in a binary mode.

Error handling

If an error occurs during reading, the system variable ERRNO is set to 
ERR_FILEACC. 

If timeout before the read operation is finished, the system variable ERRNO is set to 
ERR_DEV_MAXTIME.

These errors can then be dealt with by the error handler.

Predefined data

The constant EOF can be used to check if the file was empty, when trying to read from 
the file or to stop reading at the end of the file.

CONST string EOF := "EOF";
142 RAPID reference part 2, Functions and data types A-Z



 ReadStrBin
Function Advanced functions
Syntax

ReadStrBin ’(’
[IODevice ’:=’] <variable (VAR) of iodev>’,’
[NoOfChars ’:=’] <expression (IN) of num>
[’\’Time’:=’ <expression (IN) of num>]’)’

A function with a return value of the type string.

Related information

Described in:
Opening (etc.) serial channels RAPID Summary - Communication
or files
Write binary string Instructions - WriteStrBin
RAPID reference part 2, Functions and data types A-Z 143



ReadStrBin  
Advanced functions Function
144 RAPID reference part 2, Functions and data types A-Z



 RelTool
Function  
RelTool - Make a displacement relative to the tool
RelTool (Relative Tool) is used to add a displacement and/or a rotation, expressed in 
the tool coordinate system, to a robot position.

Example

MoveL RelTool (p1, 0, 0, 100), v100, fine, tool1;

The robot is moved to a position that is 100 mm from p1 in the direction of the 
tool.

MoveL RelTool (p1, 0, 0, 0 \Rz:= 25), v100, fine, tool1;

The tool is rotated 25o around its z-axis.

Return value Data type: robtarget

The new position with the addition of a displacement and/or a rotation, if any, relative 
to the active tool.

Arguments

RelTool  (Point  Dx  Dy  Dz  [\Rx]  [\Ry]  [\Rz])

Point Data type: robtarget

The input robot position. The orientation part of this position defines the current 
orientation of the tool coordinate system.

Dx Data type: num

The displacement in mm in the x direction of the tool coordinate system.

Dy Data type: num

The displacement in mm in the y direction of the tool coordinate system.

Dz Data type: num

The displacement in mm in the z direction of the tool coordinate system.

[\Rx] Data type: num

The rotation in degrees around the x axis of the tool coordinate system.
RAPID reference part 2, Functions and data types A-Z 145



RelTool  
 Function
[\Ry] Data type: num

The rotation in degrees around the y axis of the tool coordinate system.

[\Rz] Data type: num

The rotation in degrees around the z axis of the tool coordinate system.

In the event that two or three rotations are specified at the same time, these will 
be performed first around the x-axis, then around the new y-axis, and then around 
the new z-axis.

Syntax

RelTool’(’
[ Point ’:=’ ] < expression (IN) of robtarget>’,’
[Dx ’:=’] <expression (IN) of num> ’,’
[Dy ’:=’] <expression (IN) of num> ’,’
[Dz ’:=’] <expression (IN) of num> 
[’\’Rx ’:=’ <expression (IN) of num> ]
[’\’Ry ’:=’ <expression (IN) of num> ]
[’\’Rz ’:=’ <expression (IN) of num> ]’)’

A function with a return value of the data type robtarget.

Related information

Described in:
Mathematical instructions and functions RAPID Summary - Mathematics
Positioning instructions RAPID Summary - Motion
146 RAPID reference part 2, Functions and data types A-Z



 RobOS
Function  
RobOS - Check if execution is on RC or VC
RobOS (Robot Operating System) can be used to check, if the execution is performed 
on Robot Controller RC or Virtual Controller VC (such as RobotStudio, Program-
Maker, QuickTeach).

Example

IF RobOS() THEN
! Execution statements in RC

ELSE
! Execution statements in VC

ENDIF

Return value Data type: bool

TRUE if execution runs on Robot Controller, FALSE otherwise.

Syntax

RobOS ’(’’)’

A function with a return value of the data type bool.
RAPID reference part 2, Functions and data types A-Z 147



RobOS  
 Function
148 RAPID reference part 2, Functions and data types A-Z



 Round
Function  
Round - Round is a numeric value
Round is used to round a numeric value to a specified number of decimals or to an inte-
ger value.

Example

VAR num val;

val := Round(0.38521\Dec:=3);

The variable val is given the value 0.385.

val := Round(0.38521\Dec:=1);

The variable val is given the value 0.4.

val := Round(0.38521);

The variable val is given the value 0.

Return value Data type: num

The numeric value rounded to the specified number of decimals. 

Arguments

Round  ( Val [\Dec])

Val (Value) Data type: num

The numeric value to be rounded.

[\Dec] (Decimals Data type: num

Number of decimals.

If the specified number of decimals is 0 or if the argument is omitted, the value 
is rounded to an integer.

The number of decimals must not be negative or greater than the available pre-
cision for numeric values.
RAPID reference part 2, Functions and data types A-Z 149



Round  
 Function
Syntax

Round’(’
[ Val ’:=’ ] <expression (IN) of num>
[ \Dec ’:=’ <expression (IN) of num> ]
’)’

A function with a return value of the data type num.

Related information

Described in:
Mathematical instructions and functions RAPID Summary - Mathematics
Truncating a value Functions - Trunc
150 RAPID reference part 2, Functions and data types A-Z



 RunMode
Function  
RunMode - Read the running mode
RunMode (Running Mode) is used to read the current running mode of the program 
task.

Example

IF RunMode() = RUN_CONT_CYCLE THEN
..
ENDIF

The program section is executed only for continuous or cycle running.

Return value Data type: symnum

The current running mode as defined in the table below.

Arguments

RunMode ( [ \Main] )

[ \Main ] Data type: switch

Return current running mode for program task main. 
Used in multi-tasking system to get current running mode for program task main 
from some other program task.

If this argument is omitted, the return value always mirrors the current running 
mode for the program task which executes the function RunMode.

Return value Symbolic constant Comment

0 RUN_UNDEF Undefined running mode

1 RUN_CONT_CYCLE Continuous or cycle running mode

2 RUN_INSTR_FWD Instruction forward running mode

3 RUN_INSTR_BWD Instruction backward running mode

4 RUN_SIM Simulated running mode

5 RUN_STEP_MOVE Move instructions forward running, logical 
instructions continuous running mode
RAPID reference part 2, Functions and data types A-Z 151



RunMode  
 Function
Syntax

RunMode ’(’ [’\’Main] ’)’

A function with a return value of the data type symnum.

Related information

Described in:
Reading operating mode Functions - OpMode
152 RAPID reference part 2, Functions and data types A-Z



 Sin
Function  
Sin - Calculates the sine value
Sin (Sine) is used to calculate the sine value from an angle value.

Example

VAR num angle;
VAR num value;
.
.
value := Sin(angle);

Return value Data type: num

The sine value, range [-1, 1] .

Arguments

Sin  (Angle)

Angle Data type: num

The angle value, expressed in degrees.

Syntax

Sin’(’
[Angle’:=’] <expression (IN) of num>
’)’

A function with a return value of the data type num.

Related information

Described in:
Mathematical instructions and functions RAPID Summary - Mathematics
RAPID reference part 2, Functions and data types A-Z 153



Sin  
 Function
154 RAPID reference part 2, Functions and data types A-Z



 Sqrt
Function  
Sqrt - Calculates the square root value
Sqrt (Square root) is used to calculate the square root value.

Example

VAR num x_value;
VAR num y_value;
.
.
y_value := Sqrt( x_value);

Return value Data type: num

The square root value.

Arguments

Sqrt  (Value)

Value Data type: num

The argument value for square root ( ); it has to be .

Syntax

Sqrt’(’
[Value’:=’] <expression (IN) of num>
’)’

A function with a return value of the data type num.

Related information

Described in:
Mathematical instructions and functions RAPID Summary - Mathematics

0≥
RAPID reference part 2, Functions and data types A-Z 155



Sqrt  
 Function
156 RAPID reference part 2, Functions and data types A-Z



 StrFind
Function  
StrFind - Searches for a character in a string
StrFind (String Find) is used to search in a string, starting at a specified position, for a 
character that belongs to a specified set of characters.

Example

VAR num found;

found := StrFind("Robotics",1,"aeiou");

The variable found is given the value 2.

found := StrFind("Robotics",1,"aeiou"\NotInSet);

The variable found is given the value 1.

found := StrFind("IRB 6400",1,STR_DIGIT);

The variable found is given the value 5.

found := StrFind("IRB 6400",1,STR_WHITE);

The variable found is given the value 4.

Return value Data type: num

The character position of the first character, at or past the specified position, that 
belongs to the specified set. If no such character is found, String length +1 is returned.

Arguments

StrFind  (Str ChPos Set [\NotInSet])

Str (String) Data type: string

The string to search in.

ChPos (Character Position) Data type: num

Start character position. A runtime error is generated if the position is outside the 
string.

Set Data type: string

Set of characters to test against.
RAPID reference part 2, Functions and data types A-Z 157



StrFind  
 Function
[\NotInSet] Data type: switch

Search for a character not in the set of characters.

Syntax

StrFind’(’
[ Str ’:=’ ] <expression (IN) of string> ’,’
[ ChPos ’:=’ ] <expression (IN) of num> ’,’
[ Set’:=’ ] <expression (IN) of string> 
[’\’NotInSet ]
’)’

A function with a return value of the data type num.

Related information

Described in:
String functions RAPID Summary - String Functions
Definition of string Data Types - string
String values Basic Characteristics -

Basic Elements
158 RAPID reference part 2, Functions and data types A-Z



 StrLen
Function  
StrLen - Gets the string length
StrLen (String Length) is used to find the current length of a string.

Example

VAR num len;

len := StrLen("Robotics");

The variable len is given the value 8.

Return value Data type: num

The number of characters in the string (>=0).

Arguments

StrLen  (Str)

Str (String) Data type: string

The string in which the number of characters is to be counted.

Syntax

StrLen’(’
[ Str ’:=’ ] <expression (IN) of string> 
’)’

A function with a return value of the data type num.
RAPID reference part 2, Functions and data types A-Z 159



StrLen  
 Function
Related information

Described in:
String functions RAPID Summary - String Functions
Definition of string Data Types - string
String values Basic Characteristics -

Basic Elements
160 RAPID reference part 2, Functions and data types A-Z



 StrMap
Function  
StrMap - Maps a string
StrMap (String Mapping) is used to create a copy of a string in which all characters are 
translated according to a specified mapping.

Example

VAR string str;

str := StrMap("Robotics","aeiou","AEIOU");

The variable str is given the value "RObOtIcs".

str := StrMap("Robotics",STR_LOWER, STR_UPPER);

The variable str is given the value "ROBOTICS".

Return value Data type: string

The string created by translating the characters in the specified string, as specified by 
the "from" and "to" strings. Each character, from the specified string, that is found in 
the "from" string is replaced by the character at the corresponding position in the "to" 
string. Characters for which no mapping is defined are copied unchanged to the result-
ing string.

Arguments

StrMap  ( Str FromMap ToMap)

Str (String) Data type: string

The string to translate.

FromMap Data type: string

Index part of mapping.

ToMap Data type: string

Value part of mapping.
RAPID reference part 2, Functions and data types A-Z 161



StrMap  
 Function
Syntax

StrMap’(’
[ Str ’:=’ ] <expression (IN) of string> ’,’
[ FromMap’:=’ ] <expression (IN) of string> ’,’
[ ToMap’:=’ ] <expression (IN) of string> 
’)’

A function with a return value of the data type string.

Related information

Described in:
String functions RAPID Summary - String Functions
Definition of string Data Types - string
String values Basic Characteristics -

Basic Elements
162 RAPID reference part 2, Functions and data types A-Z



 StrMatch
Function  
StrMatch - Search for pattern in string
StrMatch (String Match) is used to search in a string, starting at a specified position, 
for a specified pattern.

Example

VAR num found;

found := StrMatch("Robotics",1,"bo");

The variable found is given the value 3.

Return value Data type: num

The character position of the first substring, at or past the specified position, that is 
equal to the specified pattern string. If no such substring is found, string length +1 is 
returned.

Arguments

StrMatch  (Str ChPos Pattern)

Str (String) Data type: string

The string to search in.

ChPos (Character Position) Data type: num

Start character position. A runtime error is generated if the position is outside the 
string.

Pattern Data type: string

Pattern string to search for.

Syntax

StrMatch’(’
[ Str ’:=’ ] <expression (IN) of string> ’,’
[ ChPos ’:=’ ] <expression (IN) of num> ’,’
[ Pattern’:=’ ] <expression (IN) of string> 
’)’

A function with a return value of the data type num.
RAPID reference part 2, Functions and data types A-Z 163



StrMatch  
 Function
Related information

Described in:
String functions RAPID Summary - String Functions
Definition of string Data Types - string
String values Basic Characteristics -

Basic Elements
164 RAPID reference part 2, Functions and data types A-Z



 StrMemb
Function  
StrMemb - Checks if a character belongs to a set
StrMemb (String Member) is used to check whether a specified character in a string 
belongs to a specified set of characters.

Example

VAR bool memb;

memb := StrMemb("Robotics",2,"aeiou");

The variable memb is given the value TRUE, as o is a member of the set "aeiou".

memb := StrMemb("Robotics",3,"aeiou");

The variable memb is given the value FALSE, as b is not a member of the set 
"aeiou".

memb := StrMemb("S-721 68 VÄSTERÅS",3,STR_DIGIT);

The variable memb is given the value TRUE.

Return value Data type: bool

TRUE if the character at the specified position in the specified string belongs to the 
specified set of characters.

Arguments

StrMemb  (Str ChPos Set)

Str (String) Data type: string

The string to check in.

ChPos (Character Position) Data type: num

The character position to check. A runtime error is generated if the position is 
outside the string.

Set Data type: string

Set of characters to test against.
RAPID reference part 2, Functions and data types A-Z 165



StrMemb  
 Function
Syntax

StrMemb’(’
[ Str ’:=’ ] <expression (IN) of string> ’,’
[ ChPos ’:=’ ] <expression (IN) of num> ’,’
[ Set’:=’ ] <expression (IN) of string> 
’)’

A function with a return value of the data type bool.

Related information

Described in:
String functions RAPID Summary - String Functions
Definition of string Data Types - string
String values Basic Characteristics -

Basic Elements
166 RAPID reference part 2, Functions and data types A-Z



 StrOrder
Function  
StrOrder - Checks if strings are ordered
StrOrder (String Order) is used to check whether two strings are in order, according to 
a specified character ordering sequence.

Example

VAR bool le;

le := StrOrder("FIRST","SECOND",STR_UPPER);

The variable le is given the value TRUE, because "FIRST" comes before 
"SECOND" in the character ordering sequence STR_UPPER.

Return value Data type: bool

TRUE if the first string comes before the second string (Str1 <= Str2) when characters 
are ordered as specified.

Characters that are not included in the defined ordering are all assumed to follow the 
present ones.

Arguments

StrOrder  ( Str1 Str2 Order)

Str1 (String 1) Data type: string

First string value.

Str2 (String 2) Data type: string

Second string value.

Order Data type: string

Sequence of characters that define the ordering.
RAPID reference part 2, Functions and data types A-Z 167



StrOrder  
 Function
Syntax

StrOrder’(’
[ Str1 ’:=’ ] <expression (IN) of string> ’,’
[ Str2 ’:=’ ] <expression (IN) of string> ’,’
[ Order ’:=’ ] <expression (IN) of string> 
’)’

A function with a return value of the data type bool.

Related information

Described in:
String functions RAPID Summary - String Functions
Definition of string Data Types - string
String values Basic Characteristics -

Basic Elements
168 RAPID reference part 2, Functions and data types A-Z



 StrPart
Function  
StrPart - Finds a part of a string
StrPart (String Part) is used to find a part of a string, as a new string.

Example

VAR string part;

part := StrPart("Robotics",1,5);

The variable part is given the value "Robot".

Return value Data type: string

The substring of the specified string, which has the specified length and starts at the 
specified character position.

Arguments

StrPart  (Str ChPos  Len)

Str (String) Data type: string

The string in which a part is to be found.

ChPos (Character Position) Data type: num

Start character position. A runtime error is generated if the position is outside the 
string.

Len (Length) Data type: num

Length of string part. A runtime error is generated if the length is negative or 
greater than the length of the string, or if the substring is (partially) outside the 
string.

Syntax

StrPart’(’
[ Str ’:=’ ] <expression (IN) of string> ’,’
[ ChPos ’:=’ ] <expression (IN) of num> ’,’
[ Len’:=’ ] <expression (IN) of num> 
’)’

A function with a return value of the data type string.
RAPID reference part 2, Functions and data types A-Z 169



StrPart  
 Function
Related information

Described in:
String functions RAPID Summary - String Functions
Definition of string Data Types - string
String values Basic Characteristics -

Basic Elements
170 RAPID reference part 2, Functions and data types A-Z



 StrToByte
Function  
StrToByte - Converts a string to a byte data
StrToByte (String To Byte) is used to convert a string with a defined byte data format 
into a byte data.

Example

VAR string con_data_buffer{5} := ["10", "AE", "176", "00001010", "A"];
VAR byte data_buffer{5};

data_buffer{1} := StrToByte(con_data_buffer{1});

The content of the array component data_buffer{1} will be 10 decimal after the 
StrToByte ... function.

data_buffer{2} := StrToByte(con_data_buffer{2}\Hex);

The content of the array component data_buffer{2} will be 174 decimal after the 
StrToByte ... function.

data_buffer{3} := StrToByte(con_data_buffer{3}\Okt);

The content of the array component data_buffer{3} will be 126 decimal after the 
StrToByte ... function.

data_buffer{4} := StrToByte(con_data_buffer{4}\Bin);

The content of the array component data_buffer{4} will be 10 decimal after the 
StrToByte ... function.

data_buffer{5} := StrToByte(con_data_buffer{5}\Char);

The content of the array component data_buffer{5} will be 65 decimal after the 
StrToByte ... function.

Return value Data type: byte

The result of the conversion operation in decimal representation.
RAPID reference part 2, Functions and data types A-Z 171



StrToByte  
 Function
Arguments

StrToByte  (ConStr [\Hex] | [\Okt] | [\Bin] | [\Char])

ConStr (Convert String) Data type: string

The string data to be converted. 

If the optional switch argument is omitted, the string to be converted has decimal (Dec) 
format.

[\Hex] (Hexadecimal) Data type: switch

The string to be converted has hexadecimal format.

[\Okt] (Octal) Data type: switch

The string to be converted has octal format.

[\Bin] (Binary) Data type: switch

The string to be converted has binary format.

[\Char] (Character) Data type: switch

The string to be converted has ASCII character format.

Limitations

Depending on the format of the string to be converted, the following string data 
is valid:

Format: String length: Range:
Dec .....: ’0’ - ’9’ 3 "0" - "255"
Hex .....: ’0’ - ’9’, ’a’ -’f’, ’A’ - ’F’ 2 "0" - "FF"
Okt ......: ’0’ - ’7’ 3 "0" - "377"
Bin ......: ’0’ - ’1’ 8 "0" - "11111111"
Char ....: Any ASCII character 1 One ASCII char

RAPID character codes (e.g. “\07” for BEL control character) can be used as 
arguments in ConStr.
172 RAPID reference part 2, Functions and data types A-Z



 StrToByte
Function  
Syntax

StrToByte’(’
[ConStr ’:=’] <expression (IN) of string>
[’\’ Hex ] | [’\’ Okt] | [’\’ Bin] | [’\’ Char]
’)’ ’;’

A function with a return value of the data type byte.

Related information

Described in:
Convert a byte to a string data Instructions - ByteToStr
Other bit (byte) functions RAPID Summary - Bit Functions
Other string functions RAPID Summary - String Functions
RAPID reference part 2, Functions and data types A-Z 173



StrToByte  
 Function
174 RAPID reference part 2, Functions and data types A-Z



 StrToVal
Function  
StrToVal - Converts a string to a value
StrToVal (String To Value) is used to convert a string to a value of any data type.

Example

VAR bool ok;
VAR num nval;

ok := StrToVal("3.85",nval);

The variable ok is given the value TRUE and nval is given the value 3.85.

Return value Data type: bool

TRUE if the requested conversion succeeded, FALSE otherwise.

Arguments

StrToVal  ( Str Val )

Str (String) Data type: string

A string value containing literal data with format corresponding to the data type 
used in argument Val. Valid format as for RAPID literal aggregates.

Val (Value) Data type: ANYTYPE

Name of the variable or persistent of any data type for storage of the result from 
the conversion. The data is unchanged if the requested conversion failed.

Example

VAR string 15 := “[600, 500, 225.3]”;
VAR bool ok;
VAR pos pos15;

ok := StrToVal(str15,pos15);

The variable ok is given the value TRUE and the variable p15 is given the value 
that are specified in the string str15.
RAPID reference part 2, Functions and data types A-Z 175



StrToVal  
 Function
Syntax

StrToVal’(’
[ Str ’:=’ ] <expression (IN) of string> ’,’
[ Val ’:=’ ] <var or pers (INOUT) of ANYTYPE> 
’)’

A function with a return value of the data type bool.

Related information

Described in:
String functions RAPID Summary - String Functions
Definition of string Data Types - string
String values Basic Characteristics -

Basic Elements
176 RAPID reference part 2, Functions and data types A-Z



 Tan
Function  
Tan - Calculates the tangent value
Tan (Tangent) is used to calculate the tangent value from an angle value.

Example

VAR num angle;
VAR num value;
.
.
value := Tan(angle);

Return value Data type: num

The tangent value.

Arguments

Tan  (Angle)

Angle Data type: num

The angle value, expressed in degrees.

Syntax

Tan’(’
[Angle ’:=’] <expression (IN) of num>
’)’

A function with a return value of the data type num.

Related information

Described in:
Mathematical instructions and functions RAPID Summary - Mathematics
Arc tangent with return value in the
range [-180, 180] Functions - ATan2
RAPID reference part 2, Functions and data types A-Z 177



Tan  
 Function
178 RAPID reference part 2, Functions and data types A-Z



 TestAndSet
Function  
TestAndSet - Test variable and set if unset 
TestAndSet can be used together with a normal data object of the type bool, as a binary 
semaphore, to retrieve exclusive right to specific RAPID code areas or system 
resources. The function could be used both between different program tasks and dif-
ferent execution levels (TRAP or Event Routines) within the same program task.

Example of resources that can need protection from access at the same time:

- Use of some RAPID routines with function problems when executed in paral-
lel.

- Use of the Teach Pendant - Operator Output & Input

Example

MAIN program task:
PERS bool tproutine_inuse := FALSE;
....
WaitUntil TestAndSet(tproutine_inuse);
TPWrite “First line from MAIN”;
TPWrite “Second line from MAIN”;
TPWrite “Third line from MAIN”;
tproutine_inuse := FALSE;

BACK1 program task:
PERS bool tproutine_inuse := FALSE;
.....
WaitUntil TestAndSet(tproutine_inuse);
TPWrite “First line from BACK1”;
TPWrite “Second line from BACK1”;
TPWrite “Third line from BACK1”;
tproutine_inuse := FALSE;

To avoid mixing up the lines, one from MAIN and one from BACK1, the use of the 
TestAndSet function guarantees that all three lines from each task are not separated.

If program task MAIN takes the semaphore TestAndSet(tproutine_inuse) first, then 
program task BACK1 must wait until the program task MAIN has left the semaphore.

Return value Data type: num

TRUE if the semaphore has been taken by me (executor of TestAndSet function), oth-
erwise FALSE. ???
RAPID reference part 2, Functions and data types A-Z 179



TestAndSet  
 Function
Arguments

TestAndSet Object

Object Data type: bool

User defined data object to be used as semaphore. The data object could be a 
VAR or a PERS. If TestAndSet are used between different program tasks, the 
object must be a PERS or an installed VAR (intertask objects).

Program execution

This function will in one indivisible step check the user defined variable and, if it is 
unset, will set it and return TRUE, otherwise it will return FALSE.

IF Object = FALSE THEN
Object := TRUE;
RETURN TRUE;

ELSE
RETURN FALSE;

ENDIF

Example

LOCAL VAR bool doit_inuse := FALSE;
...
PROC doit(...)

WaitUntil TestAndSet (doit_inuse);
....
doit_inuse := FALSE;

ENDPROC

If a module is installed built-in and shared, it is possible to use a local module 
variable for protection of access from different program tasks at the same time.

Note in this case: If program execution is stopped in the routine doit and the pro-
gram pointer is moved to main, the variable doit_inuse will not be reset. To avoid 
this, reset the variable doit_inuse to FALSE in the START event routine.

Syntax

TestAndSet ’(’
[ Object ’:=’ ] < variable or persistent (INOUT) of bool> ’)’

A function with a return value of the data type bool.
180 RAPID reference part 2, Functions and data types A-Z



 TestAndSet
Function  
Related information

Described in:
Built-in and shared module User’s Guide - System parameters
Intertask objects RAPID Developer’s Manual - 

RAPID Kernel Reference Manual -
Intertask objects
RAPID reference part 2, Functions and data types A-Z 181



TestAndSet  
 Function
182 RAPID reference part 2, Functions and data types A-Z



 TestDI
Function  
TestDI - Tests if a digital input is set
TestDI is used to test whether a digital input is set.

Examples

IF TestDI (di2) THEN . . . 

If the current value of the signal di2 is equal to 1, then . . .

IF NOT TestDI (di2) THEN . . . 

If the current value of the signal di2 is equal to 0, then . . .

WaitUntil TestDI(di1) AND TestDI(di2);

Program execution continues only after both the di1 input and the di2 input have 
been set.

Return value Data type: bool

TRUE = The current value of the signal is equal to 1.

FALSE = The current value of the signal is equal to 0.

Arguments

TestDI  (Signal)

Signal Data type: signaldi

The name of the signal to be tested.

Syntax

TestDI ’(’
[ Signal ’:=’ ] < variable (VAR) of signaldi > ’)’

A function with a return value of the data type bool.
RAPID reference part 2, Functions and data types A-Z 183



TestDI  
 Function
Related information

Described in:
Reading the value of a digital input signal Functions - DInput
Input/Output instructions RAPID Summary - 

Input and Output Signals
184 RAPID reference part 2, Functions and data types A-Z



 TestSignRead
Function  
TestSignRead - Read test signal value
TestSignRead is used to read the actual test signal value.

This function returns the momentary value or the mean value of the latest samples, 
depending on channel specification in instruction TestSignDefine.

Example

CONST num speed_channel;
VAR num speed_value;
...
TestSignDefine speed_channel, speed, orbit, 1, 0;
...
! During some movements with orbit’s axis 1
speed_value := TestSignRead(speed_channel);
...
TestSignReset;

speed_value is assigned the mean value of the latest 8 samples generated each 
0.5ms of the test signal speed on channel speed_channel. 
The channel speed_channel measures the speed of axis 1 on the mechanical unit 
orbit.

Return valueData type: num

The numeric value in SI units on the motor side for the specified channel according to 
the definition in instruction TestSignDefine.

Arguments

TestSignRead (Channel)

Channel Data type: num

The channel number 1-12 for the test signal to be read.
The same number must be used in the definition instruction TestSignDefine.
RAPID reference part 2, Functions and data types A-Z 185



TestSignRead  
 Function
Program execution

Returns the momentary value or the mean value of the latest samples, depending on the 
channel specification in the instruction TestSignDefine.

For predefined test signals with valid SI units for external manipulator axes, see data 
type testsignal.

Example

CONST num torque_channel;
VAR num torque_value;
VAR intnum timer_int;
CONST jointtarget psync := [...];
...
CONNECT timer_int WITH TorqueTrap;
ITimer \Single, 0.05, timer_int;
TestSignDefine torque_channel, torque_ref, IRBP_K, 2, 0.001;
...
MoveAbsJ psync \NoEOffs, v5, fine, tool0;
...
IDelete timer_int;
TestSignReset;

TRAP TorqueTrap
IF (TestSignRead(torque_channel) > 6) THEN

TPWrite “Torque pos = “ + ValToStr(CJointT());
Stop;
EXIT;

ELSE
IDelete timer_int;
CONNECT timer_int WITH TorqueTrap;
ITimer \Single, 0.05, timer_int;

ENDIF
ENDTRAP

The joint position, when the torque reference for manipulator IRBP_K axis 2 is 
for the first time greater than 6 Nm on the motor side during the slow movement 
to position psync, is displayed on the Operators Window on the TP.

Syntax

TestSignRead’(’
[ Channel ’:=’] <expression (IN) of num>’)’

A function with a return value of the type num.
186 RAPID reference part 2, Functions and data types A-Z



 TestSignRead
Function  
Related information

Described in:
Define test signal Instructions - TestSignDefine
Reset test signals Instructions - TestSignReset
RAPID reference part 2, Functions and data types A-Z 187



TestSignRead  
 Function
188 RAPID reference part 2, Functions and data types A-Z



 Trunc
Function  
Trunc - Truncates a numeric value
Trunc (Truncate) is used to truncate a numeric value to a specified number of decimals 
or to an integer value.

Example

VAR num val;

val := Trunc(0.38521\Dec:=3);

The variable val is given the value 0.385.

reg1 := 0.38521

val := Trunc(reg1\Dec:=1);

The variable val is given the value 0.3.

val := Trunc(0.38521);

The variable val is given the value 0.

Return value Data type: num

The numeric value truncated to the specified number of decimals.

Arguments

Trunc  ( Val [\Dec] )

Val (Value) Data type: num

The numeric value to be truncated.

[\Dec] (Decimals) Data type: num

Number of decimals.

If the specified number of decimals is 0 or if the argument is omitted, the value 
is truncated to an integer.

The number of decimals must not be negative or greater than the available pre-
cision for numeric values.
RAPID reference part 2, Functions and data types A-Z 189



Trunc  
 Function
Syntax

Trunc’(’
[ Val ’:=’ ] <expression (IN) of num>
[ \Dec ’:=’ <expression (IN) of num> ]
’)’

A function with a return value of the data type num.

Related information

Described in:
Mathematical instructions and functions RAPID Summary - Mathematics
Rounding a value Functions - Round
190 RAPID reference part 2, Functions and data types A-Z



 ValToStr
Function  
ValToStr - Converts a value to a string
ValToStr (Value To String) is used to convert a value of any data type to a string.

Example

VAR string str;
VAR pos p := [100,200,300];

str := ValToStr(1.234567);

The variable str is given the value "1.23457".

str := ValToStr(TRUE);

The variable str is given the value "TRUE".

str := ValToStr(p);

The variable str is given the value "[100,200,300]".

Return value Data type: string

The value is converted to a string with standard RAPID format. This means in principle 
6 significant digits. If the decimal part is less than 0.000005 or greater than 0.999995, 
the number is rounded to an integer.

A runtime error is generated if the resulting string is too long.

Arguments

ValToStr  ( Val )

Val (Value) Data type: ANYTYPE

A value of any data type.

Syntax

ValToStr’(’
[ Val ’:=’ ] <expression (IN) of ANYTYPE> 
’)’

A function with a return value of the data type string.
RAPID reference part 2, Functions and data types A-Z 191



ValToStr  
 Function
Related information

Described in:
String functions RAPID Summary - String Functions
Definition of string Data Types - string
String values Basic Characteristics -

Basic Elements
192 RAPID reference part 2, Functions and data types A-Z



 VectMagn
Function  
VectMagn - Magnitude of a pos vector
VectMagn (Vector Magnitude) is used to calculate the magnitude of a pos vector.

Example

A vector A can be written as the sum of its components in the three orthogonal direc-
tions:

The magnitude of A is:

The vector is described by the data type pos and the magnitude by the data type num:

VAR num magnitude;
VAR pos vector;
.
.
vector := [1,1,1];
magnitude := VectMagn(vector);

Return value Data type: num

The magnitude of the vector (data type pos).

Az

Ax

Ay

Az

y

x

A Axx Ayy Azz+ +=

A Ax
2 Ay

2 Az
2

+ +=
RAPID reference part 2, Functions and data types A-Z 193



VectMagn  
 Function
Arguments

VectMagn  (Vector)

Vector Data type: pos

The vector described by the data type pos.

Syntax

VectMagn’(’
[Vector ’:=’] <expression (IN) of pos>
’)’

A function with a return value of the data type num.

Related information

Described in:
Mathematical instructions and functions RAPID Summary - Mathematics
194 RAPID reference part 2, Functions and data types A-Z



 aiotrigg
Data type Advanced functions
aiotrigg - Analog I/O trigger condition
aiotrigg (Analog I/O Trigger) is used to define the condition to generate an interrupt 
for an analog input or output signal.

Description

Data of the type aiotrigg defines the way a low and a high threshold will be used to 
determine whether the logical value of an analog signal satisfies a condition to generate 
an interrupt.

Example

VAR intnum sig1int;
CONNECT sig1int WITH iroutine1;
ISignalAI \Single, ai1, AIO_BETWEEN, 1.5, 0.5, 0, sig1int;

Orders an interrupt which is to occur the first time the logical value of the analog 
input signal ai1 is between 0.5 and 1.5. A call is then made to the iroutine1 trap 
routine.

Predefined data

The following symbolic constants of the data type aiotrigg are predefined and can be 
used when specifying a condition for the instructions ISignalAI and ISignalAO.

Value Symbolic constant Comment

1 AIO_ABOVE_HIGH Signal will generate interrupts if above specified high value

2 AIO_BELOW_HIGH Signal will generate interrupts if below specified high value

3 AIO_ABOVE_LOW Signal will generate interrupts if above specified low value

4 AIO_BELOW_LOW Signal will generate interrupts if below specified low value

5 AIO_BETWEEN Signal will generate interrupts if between specified low and 
high values

6 AIO_OUTSIDE Signal will generate interrupts if below specified low value or 
above specified high value

7 AIO_ALWAYS Signal will always generate interrupts
RAPID reference part 2, Functions and data types A-Z 195



aiotrigg  
Advanced functions Data type
Characteristics

aiotrigg is an alias data type for num and consequently inherits its characteristics.

Related information

Described in:
Interrupt from analog input signal Instructions - ISignalAI
Interrupt from analog output signal Instructions - ISignalAO
Data types in general, alias data types Basic Characteristics - Data Types
196 RAPID reference part 2, Functions and data types A-Z



 bool
Data type  
bool - Logical values
Bool is used for logical values (true/false).

Description

The value of data of the type bool can be either TRUE or FALSE.

Examples

flag1 := TRUE;

flag is assigned the value TRUE.

VAR bool highvalue;
VAR num reg1;

.
highvalue := reg1 > 100;

highvalue is assigned the value TRUE if reg1 is greater than 100; otherwise, 
FALSE is assigned.

IF highvalue Set do1;

The do1 signal is set if highvalue is TRUE.

highvalue := reg1 > 100;
mediumvalue := reg1 > 20 AND NOT highvalue;

mediumvalue is assigned the value TRUE if reg1 is between 20 and 100.

Related information

Described in:
Logical expressions Basic Characteristics - Expressions
Operations using logical values Basic Characteristics - Expressions
RAPID reference part 2, Functions and data types A-Z 197



bool  
 Data type
198 RAPID reference part 2, Functions and data types A-Z



 byte
Data type  
byte - Decimal values 0 - 255
Byte is used for decimal values (0 - 255) according to the range of a byte.

This data type is used in conjunction with instructions and functions that handle the bit 
manipulations and convert features.

Description

Data of the type byte represents a decimal byte value.

Examples

CONST num parity_bit := 8;

VAR byte data1 := 130;

Definition of a variable data1 with a decimal value 130. 

BitClear data1, parity_bit;

Bit number 8 (parity_bit) in the variable data1 will be set to 0, e.g. the content 
of the variable data1 will be changed from 130 to 2 (decimal representation). 

Error handling

If an argument of the type byte has a value that is not in the range between 0 and 255, 
an error is returned on program execution.

Characteristics

Byte is an alias data type for num and consequently inherits its characteristics.

Related information

Described in:
Alias data types Basic Characteristics- Data Types
Bit functions RAPID Summary - Bit Functions
RAPID reference part 2, Functions and data types A-Z 199



byte  
 Data type
200 RAPID reference part 2, Functions and data types A-Z



 clock
Data type  
clock - Time measurement
Clock is used for time measurement. A clock functions like a stopwatch used for tim-
ing.

Description

Data of the type clock stores a time measurement in seconds and has a resolution of 
0.01 seconds.

Example

VAR clock clock1;

ClkReset clock1;

The clock, clock1, is declared and reset. Before using ClkReset, ClkStart, ClkStop and 
ClkRead, you must declare a variable of data type clock in your program.

Limitations

The maximum time that can be stored in a clock variable is approximately 49 days 
(4,294,967 seconds). The instructions ClkStart, ClkStop and ClkRead report clock 
overflows in the very unlikely event that one occurs.

A clock must be declared as a VAR variable type, not as a persistent variable type.

Characteristics

Clock is a non-value data type and cannot be used in value-oriented operations.

Related information

Described in:
Summary of Time and Date Instructions RAPID Summary - System & Time
Non-value data type characteristics Basic Characteristics - Data Types
RAPID reference part 2, Functions and data types A-Z 201



clock  
 Data type
202 RAPID reference part 2, Functions and data types A-Z



 confdata
Data type  
confdata - Robot configuration data
Confdata is used to define the axis configurations of the robot.

Description

All positions of the robot are defined and stored using rectangular coordinates. When 
calculating the corresponding axis positions, there will often be two or more possible 
solutions. This means that the robot is able to achieve the same position, i.e. the tool is 
in the same position and with the same orientation, with several different positions or 
configurations of the robots axes.

Some robot types use iterative numerical methods to determine the robot axes posi-
tions. In these cases the configuration parameters may be used to define good starting 
values for the joints to be used by the iterative procedure.

To unambiguously denote one of these possible configurations, the robot configuration 
is specified using four axis values. For a rotating axis, the value defines the current 
quadrant of the robot axis. The quadrants are numbered 0, 1, 2, etc. (they can also be 
negative). The quadrant number is connected to the current joint angle of the axis. For 
each axis, quadrant 0 is the first quarter revolution, 0 to 90°, in a positive direction 
from the zero position; quadrant 1 is the next revolution, 90 to 180°, etc. Quadrant -1 
is the revolution 0° to (-90°), etc. (see Figure 5).

Figure 5  The configuration quadrants for axis 6.

For a linear axis, the value defines a meter interval for the robot axis. For each axis, 
value 0 means a position between 0 and 1 meters, 1 means a position between 1 and 2 
meters. For negative values, -1 means a position between -1 and 0 meters, etc. (see Fig-
ure 6).

Figure 6  Configuration values for a linear axis.

-2-3

-1-4

21

30

0.0 1.0 2.0 3.0-1.0-2.0-3.0

Configuration value210-1-2-3

x (m)
RAPID reference part 2, Functions and data types A-Z 203



confdata  
 Data type
Robot configuration data for IRB140

There are three singularities within the robots working range (See Motion and I/O Prin-
ciples - Singularities).

cf1 is the quadrant number for axis 1.

cf4 is the quadrant number for axis 4.

cf6 is the quadrant number for axis 6.

cfx is used to select one of eight possible robot configurations numbered from 0 
through 7. The table below describes each one of them in terms of how the robot is posi-
tioned relative to the three singularities.

The pictures below give an example of how the same tool position and orientation is 
attained by using the eight different configurations:

Figure 7  Example of robot configuration 0 and 1. Note the different signs of the axis 5 
angle.

cfx Wrist center relative 
to axis 1

Wrist center relative to 
lower arm Axis 5 angle

0 In front of In front of Positive

1 In front of In front of Negative

2 In front of Behind Positive

3 In front of Behind Negative

4 Behind In front of Positive

5 Behind In front of Negative

6 Behind Behind Positive

7 Behind Behind Negative

Lower armAxis 1

Wrist center

cfx = 0

Lower armAxis 1

Wrist center

cfx = 1

ABB

ABB

beta -beta
204 RAPID reference part 2, Functions and data types A-Z



 confdata
Data type  
Figure 8  Example of robot configuration 2 and 3. Note the different signs of the axis 5 
angle.

Figure 9  Example of robot configuration 4 and 5. Note the different signs of the axis 5 
angle.

Lower arm

Axis 1

beta

cfx = 2

A
B

B

Wrist center

Lower arm

Axis 1

cfx = 3

Wrist center

A
B

B
-beta

Lower arm

Axis 1 Wrist center

cfx = 4

ABB

Lower arm

Axis 1

cfx = 5

ABB

Wrist center

beta -beta
RAPID reference part 2, Functions and data types A-Z 205



confdata  
 Data type
Figure 10  Example of robot configuration 6 and 7. Note the different signs of the axis 5 
angle.

Robot configuration data for IRB340

Only the configuration parameter cf4 is used. 

Robot configuration data for IRB540, 640

Only the configuration parameter cf6 is used. 

Robot configuration data for IRB1400, 2400, 3400, 4400, 6400

Only the three configuration parameters cf1, cf4 and cf6 are used. 

Robot configuration data for IRB5400

All four configuration parameters are used. cf1, cf4, cf6 for joints 1, 4, and 6 respec-
tively and cfx for joint 5. 

Lower armAxis 1

Wrist center

cfx = 6

ABB

Lower armAxis 1

Wrist center

cfx = 7

ABBbeta -beta
206 RAPID reference part 2, Functions and data types A-Z



 confdata
Data type  
Robot configuration data for IRB5404, 5406

The robots have two rotation axes (arms 1 and 2) and one linear axis (arm 3).

cf1 is used for the rotating axis 1

cfx is used for the rotating axis 2

cf4 and cf6 are not used

Robot configuration data for IRB5413, 5414, 5423

The robots have two linear axes (arms 1 and 2) and one or two rotating axes (arms 4 
and 5) (Arm 3 locked)

cf1 is used for the linear axis 1

cfx is used for the linear axis 2

cf4 is used for the rotating axis 4

cf6 is not used

Robot configuration data for IRB840

The robot has three linear axes (arms 1, 2 and 3) and one rotating axis (arm 4).

cf1 is used for the linear axis 1

cfx is used for the linear axis 2

cf4 is used for the rotating axis 4

cf6 is not used

Because of the robot’s mainly linear structure, the correct setting of the configuration 
parameters c1, cx is of less importance.
RAPID reference part 2, Functions and data types A-Z 207



confdata  
 Data type
Components

cf1 Data type: num

Rotating axis:

The current quadrant of axis 1, expressed as a positive or negative integer. 

Linear axis:

The current meter interval of axis 1, expressed as a positive or negative integer.

cf4 Data type: num

Rotating axis:

The current quadrant of axis 4, expressed as a positive or negative integer. 

Linear axis:

The current meter interval of axis 4, expressed as a positive or negative integer.

cf6 Data type: num

Rotating axis:

The current quadrant of axis 6, expressed as a positive or negative integer. 

Linear axis:

The current meter interval of axis 6, expressed as a positive or negative integer.

cfx Data type: num

Rotating axis:

For the IRB140, the current robot configuration, expressed as an integer in the 
range from 0 to 7.

For the IRB5400, the current quadrant of axis 5, expressed as a positive or nega-
tive integer.

For other robots, using the current quadrant of axis 2, expressed as a positive or 
negative integer.

Linear axis:

The current meter interval of axis 2, expressed as a positive or negative integer.
208 RAPID reference part 2, Functions and data types A-Z



 confdata
Data type  
Example

VAR confdata conf15 := [1, -1, 0, 0]

A robot configuration conf15 is defined as follows:

- The axis configuration of the robot axis 1 is quadrant 1, i.e. 90-180o. 
- The axis configuration of the robot axis 4 is quadrant -1, i.e. 0-(-90o). 
- The axis configuration of the robot axis 6 is quadrant 0, i.e. 0 - 90o. 
- The axis configuration of the robot axis 5 is quadrant 0, i.e. 0 - 90o. 

Structure

< dataobject of confdata >
< cf1 of num >
< cf4 of num >
< cf6 of num >
< cfx of num > 

Related information

Described in:
Coordinate systems Motion and I/O Principles - Coordi-

nate Systems
Handling configuration data Motion and I/O Principles - Robot 

Configuration
RAPID reference part 2, Functions and data types A-Z 209



confdata  
 Data type
210 RAPID reference part 2, Functions and data types A-Z



 dionum
Data type  
dionum - Digital values 0 - 1
Dionum (digital input output numeric) is used for digital values (0 or 1).

This data type is used in conjunction with instructions and functions that handle digital 
input or output signals.

Description

Data of the type dionum represents a digital value 0 or 1.

Examples

CONST dionum close := 1;

Definition of a constant close with a value equal to 1. 

SetDO grip1, close;

The signal grip1 is set to close, i.e. 1.

Predefined data

The constants high, low and edge are predefined in the system module user.sys:

CONST dionum low:=0;

CONST dionum high:=1;

CONST dionum edge:=2;

The constants low and high are designed for IO instructions. 

Edge can be used together with the interrupt instructions ISignalDI and ISignalDO.

Characteristics

Dionum is an alias data type for num and consequently inherits its characteristics.
RAPID reference part 2, Functions and data types A-Z 211



dionum  
 Data type
Related information

Described in:
Summary input/output instructions RAPID Summary - 

Input and Output Signals
Configuration of I/O User’s Guide - System Parameters
Alias data types Basic Characteristics- Data Types
212 RAPID reference part 2, Functions and data types A-Z



 errdomain
Data type Advanced functions
errdomain - Error domain
errdomain (error domain) is used to specify an error domain.

Description

Data of the type errdomain represents the domain where the error, warning or state 
changed is logged.
Refer to User Guide - Error Management, System and Error Messages
for more information.

Example

VAR errdomain err_domain;
VAR num err_number;
VAR errtype err_type;
VAR trapdata err_data;
...
TRAP trap_err

GetTrapData err_data;
ReadErrData err_data, err_domain, err_number, err_type;

ENDTRAP

When an error is trapped to the trap routine trap_err, the error domain, the error 
number and the error type are saved into appropriate variables.
RAPID reference part 2, Functions and data types A-Z 213



errdomain  
Advanced functions Data type
Predefined data

The following predefined constants can be used to specify an error domain.

Characteristics

errdomain is an alias data type for num and consequently inherits its characteristics.

Related information

Described in:
Ordering an interrupt on errors Instructions - IError
Error numbers User’s Guide - System and error messages
Alias data types Basic Characteristics - Data Types

Tabell 1  Predefined error domains

Name Error Domain Value

COMMON_ERR All error and state changed domains 0

OP_STATE Operational state change 1

SYSTEM_ERR System errors 2

HARDWARE_ERR Hardware errors 3

PROGRAM_ERR Program errors 4

MOTION_ERR Motion errors 5

OPERATOR_ERROR Operator errors 6

IO_COM_ERR I/O and Communication errors 7

USER_DEF_ERR User defined errors (raised by 
RAPID)

8

OPTION_PROD_ERR Optional product errors 9

ARCWELD_ERR ArcWelding Application errors 11

SPOTWELD_ERR SpotWelding Application errors 12

PAINT_ERR Paint Application errors 13

PICKWARE_ERR Pickware Application errors 14
214 RAPID reference part 2, Functions and data types A-Z



 errnum
Data type  
errnum - Error number
Errnum is used to describe all recoverable (non fatal) errors that occur during program 
execution, such as division by zero.

Description

If the robot detects an error during program execution, this can be dealt with in the 
error handler of the routine. Examples of such errors are values that are too high and 
division by zero. The system variable ERRNO, of type errnum, is thus assigned 
different values depending on the nature of an error. The error handler may be able to 
correct an error by reading this variable and then program execution can continue in 
the correct way.

An error can also be created from within the program using the RAISE instruction. 
This particular type of error can be detected in the error handler by specifying an error 
number (within the range 1-90 or booked with instruction BookErrNo) as an argument 
to RAISE.

Examples

reg1 := reg2 / reg3;
.
ERROR

IF ERRNO = ERR_DIVZERO THEN
reg3 := 1;
RETRY;

ENDIF

If reg3 = 0, the robot detects an error when division is taking place. This error, 
however, can be detected and corrected by assigning reg3 the value 1. Following 
this, the division can be performed again and program execution can continue.

CONST errnum machine_error := 1;
.
IF di1=0 RAISE machine_error;
.
ERROR

IF ERRNO=machine_error RAISE;

An error occurs in a machine (detected by means of the input signal di1). A jump 
is made to the error handler in the routine which, in turn, calls the error handler 
of the calling routine where the error may possibly be corrected. The constant, 
machine_error, is used to let the error handler know exactly what type of error 
has occurred.
RAPID reference part 2, Functions and data types A-Z 215



errnum  
 Data type
Predefined data

The system variable ERRNO can be used to read the latest error that occurred. A num-
ber of predefined constants can be used to determine the type of error that has occurred.

Name Cause of error
ERR_ACC_TOO_LOW Too low acceleration/deceleration specified in 

instruction PathAccLim or WorldAccLim
ERR_ALRDYCNT The interrupt variable is already connected to a 

TRAP routine
ERR_ALRDY_MOVING The robot is already moving when executing a 

StartMove instruction
ERR_AO_LIM ScaleLag analog signal value outside limit in Trig-

gIO, TriggEquip or TriggSpeed
ERR_ARGDUPCND More than one present conditional argument for the 

same parameter
ERR_ARGNAME Argument is expression, not present or of type 

switch when executing ArgName
ERR_ARGNOTPER Argument is not a persistent reference
ERR_ARGNOTVAR Argument is not a variable reference
ERR_AXIS_ACT Axis is not active
ERR_AXIS_IND Axis is not independent
ERR_AXIS_MOVING Axis is moving
ERR_AXIS_PAR Parameter axis in instruction TestSign and SetCur-

rRef is wrong.
ERR_BWDLIMIT Limit StepBwdPath
ERR_CALLIO_INTER If an IOEnable or IODisable request is interrupted 

by another request to the same unit
ERR_CALLPROC Procedure call error (not procedure) at runtime 

(late binding)
ERR_CFG_ILLTYPE Type mismatch - ReadCfgData, WriteCfgData
ERR_CFG_LIMIT Data limit - WriteCfgData
ERR_CFG_NOTFND Not found - ReadCfgData, WriteCfgData
ERR_CNTNOTVAR CONNECT target is not a variable reference

ERR_CNV_NOT_ACT The conveyor is not activated.

ERR_CNV_CONNECT The WaitWobj instruction is already active.

ERR_CNV_DROPPED The object that the instruction WaitWobj was wait-
ing for has been dropped.
216 RAPID reference part 2, Functions and data types A-Z



 errnum
Data type  
ERR_DEV_MAXTIME Timeout when executing a ReadBin, ReadNum or 
a ReadStr instruction

ERR_DIPLAG_LIM Too big DipLag in the instruction TriggSpeed con-
nected to current TriggL/TriggC/TriggJ

ERR_DIVZERO Division by zero

ERR_EXCRTYMAX Maximum number of retries exceeded.

ERR_EXECPHR An attempt was made to execute an instruction 
using a place holder

ERR_FILEACC A file is accessed incorrectly
ERR_FILEEXIST A file already exists
ERR_FILEOPEN A file cannot be opened
ERR_FILNOTFND File not found
ERR_FNCNORET No return value
ERR_FRAME Unable to calculate new frame
ERR_ILLDIM Incorrect array dimension
ERR_ILLQUAT Attempt to use illegal orientation (quaternion) 

value
ERR_ILLRAISE Error number in RAISE out of range
ERR_INOMAX No more interrupt numbers available
ERR_IODISABLE Timeout when executing IODisable
ERR_IODN_TIMEOUT Timeout when executing IODNGetAttr or 

IODNSetAttr
ERR_IOENABLE Timeout when executing IOEnable
ERR_IOERROR I/O Error from instruction Save
ERR_LOADED The program module is already loaded
ERR_LOADID_FATAL Only internal use in LoadId
ERR_LOADID_RETRY Only internal use in LoadId
ERR_LOADNO_INUSE The load session is in use in StartLoad
ERR_LOADNO_NOUSE The load session is not in use in CancelLoad
ERR_MAXINTVAL The integer value is too large
ERR_MODULE Incorrect module name in instruction Save
ERR_MSG_PENDING The unit is busy
ERR_NAME_INVALID If the unit name does not exist or if the unit is not 

allowed to be disabled
ERR_NEGARG Negative argument is not allowed
ERR_NOTARR Data is not an array
RAPID reference part 2, Functions and data types A-Z 217



errnum  
 Data type
ERR_NOTEQDIM The array dimension used when calling the routine 
does not coincide with its parameters

ERR_NOTINTVAL Not an integer value
ERR_NOTPRES A parameter is used, despite the fact that the corre-

sponding argument was not used at the routine call
ERR_OUTOFBND The array index is outside the permitted limits
ERR_OVERFLOW Clock overflow
ERR_PATH Missing destination path in instruction Save
ERR_PATHDIST Too long regain distance for StartMove instruction
ERR_PID_MOVESTOP Only internal use in LoadId
ERR_PID_RAISE_PP Error from ParIdRobValid or ParIdPosValid
ERR_RANYBIN_CHK Check sum error detected at data transfer with 

instruction ReadAnyBin
ERR_RANYBIN_EOF End of file is detected before all bytes are read in 

instruction ReadAnyBin
ERR_RCVDATA An attempt was made to read non numeric data 

with ReadNum
ERR_REFUNKDAT Reference to unknown entire data object
ERR_REFUNKFUN Reference to unknown function
ERR_REFUNKPRC Reference to unknown procedure at linking time or 

at run time (late binding)
ERR_REFUNKTRP Reference to unknown trap
ERR_ROBLIMIT Axis outside working area or limits exceeded for at 

least one coupled joint
ERR_SC_WRITE Error when sending to external computer
ERR_SIGSUPSEARCH The signal has already a positive value at the begin-

ning of the search process
ERR_STRTOOLNG The string is too long
ERR_SYM_ACCESS Symbol read/write access error
ERR_TP_DIBREAK A TPRead instruction was interrupted by a digital 

input
ERR_TP_MAXTIME Timeout when executing a TPRead instruction
ERR_UNIT_PAR Parameter Mech_unit in TestSign and SetCurrRef 

is wrong
ERR_UNKINO Unknown interrupt number
ERR_UNKPROC Incorrect reference to the load session in instruc-

tion WaitLoad
218 RAPID reference part 2, Functions and data types A-Z



 errnum
Data type  
ERR_UNLOAD Unload error in instruction UnLoad or WaitLoad
ERR_WAIT_MAXTIME Timeout when executing a WaitDI or WaitUntil 

instruction
ERR_WHLSEARCH No search stop

Characteristics

Errnum is an alias data type for num and consequently inherits its characteristics.

Related information

Described in:
Error recovery RAPID Summary - Error Recovery-

Basic Characteristics - Error Recovery
Data types in general, alias data types Basic Characteristics - Data Types 
RAPID reference part 2, Functions and data types A-Z 219



errnum  
 Data type
220 RAPID reference part 2, Functions and data types A-Z



 errtype
Data type Advanced functions
errtype - Error type
errtype (error type) is used to specify an error type (gravity).

Description

Data of the type errtype represents the type (state change, warning, error) of an error 
message.
Refer to User Guide - Error Management, System and Error Messages
for more information.

Example

VAR errdomain err_domain;
VAR num err_number;
VAR errtype err_type;
VAR trapdata err_data;
...
TRAP trap_err

GetTrapData err_data;
ReadErrData err_data, err_domain, err_number, err_type;

ENDTRAP

When an error is trapped to the trap routine trap_err, the error domain, the error 
number and the error type are saved into appropriate variables.

Predefined data

The following predefined constants can be used to specify an error type.

Tabell 2  Predefined error types

Name Error Type Value

TYPE_ALL Any type of error 
(state change, warning, error)

0

TYPE_STATE State change (operational message) 1

TYPE_WARN Warning (such as RAPID recover-
able error)

2

TYPE_ERR Error 3
RAPID reference part 2, Functions and data types A-Z 221



errtype  
Advanced functions Data type
Characteristics

errtype is an alias data type for num and consequently inherits its characteristics.

Related information

Described in:
Ordering an interrupt on errors Instructions - IError
Error numbers User’s Guide - System and error messages
Alias data types Basic Characteristics - Data Types
222 RAPID reference part 2, Functions and data types A-Z



 extjoint
Data type  
extjoint - Position of external joints 
Extjoint is used to define the axis positions of external axes, positioners or workpiece 
manipulators.

Description

The robot can control up to six external axes in addition to its six internal axes, i.e. a 
total of twelve axes. The six external axes are logically denoted: a, b, c, d, e, f. Each 
such logical axis can be connected to a physical axis and, in this case, the connection 
is defined in the system parameters.

Data of the type extjoint is used to hold position values for each of the logical axes a - f.

For each logical axis connected to a physical axis, the position is defined as follows:

- For rotating axes – the position is defined as the rotation in degrees from the 
calibration position.

- For linear axes – the position is defined as the distance in mm from the calibra-
tion position.

If a logical axis is not connected to a physical one, the value 9E9 is used as a position 
value, indicating that the axis is not connected. At the time of execution, the position 
data of each axis is checked and it is checked whether or not the corresponding axis is 
connected. If the stored position value does not comply with the actual axis connection, 
the following applies:

- If the position is not defined in the position data (value is 9E9), the value will 
be ignored if the axis is connected and not activated. But if the axis is activated, 
it will result in an error.

- If the position is defined in the position data, although the axis is not connected, 
the value will be ignored.

If an external axis offset is used (instruction EOffsOn or EOffsSet), the positions are 
specified in the ExtOffs coordinate system.

Components

eax_a (external axis a) Data type: num

The position of the external logical axis “a”, expressed in degrees or mm 
(depending on the type of axis).

eax_b (external axis b) Data type: num

The position of the external logical axis “b”, expressed in degrees or mm 
(depending on the type of axis).
RAPID reference part 2, Functions and data types A-Z 223



extjoint  
 Data type
...

eax_f (external axis f) Data type: num

The position of the external logical axis “f”, expressed in degrees or mm (depend-
ing on the type of axis).

Example

VAR extjoint axpos10 := [ 11, 12.3, 9E9, 9E9, 9E9, 9E9] ;

The position of an external positioner, axpos10, is defined as follows:

- The position of the external logical axis “a” is set to 11, expressed in degrees or 
mm (depending on the type of axis). 

- The position of the external logical axis “b” is set to 12.3, expressed in degrees 
or mm (depending on the type of axis). 

- Axes c to f are undefined. 

Structure

< dataobject of extjoint >
< eax_a of num >
< eax_b of num >
< eax_c of num >
< eax_d of num >
< eax_e of num >
< eax_f of num > 

Related information

Described in:
Position data Data Types - robtarget
ExtOffs coordinate system Instructions - EOffsOn
224 RAPID reference part 2, Functions and data types A-Z



 intnum
Data type  
intnum - Interrupt identity
Intnum (interrupt numeric) is used to identify an interrupt.

Description

When a variable of type intnum is connected to a trap routine, it is given a specific 
value identifying the interrupt. This variable is then used in all dealings with the inter-
rupt, such as when ordering or disabling an interrupt.

More than one interrupt identity can be connected to the same trap routine. The system 
variable INTNO can thus be used in a trap routine to determine the type of interrupt that 
occurs.

Examples

VAR intnum feeder_error;
.
CONNECT feeder_error WITH correct_feeder;
ISignalDI di1, 1, feeder_error;

An interrupt is generated when the input di1 is set to 1. When this happens, a call 
is made to the correct_feeder trap routine. 

VAR intnum feeder1_error;
VAR intnum feeder2_error;
.
PROC init_interrupt();
.

CONNECT feeder1_error WITH correct_feeder;
ISignalDI di1, 1, feeder1_error;
CONNECT feeder2_error WITH correct_feeder;
ISignalDI di2, 1, feeder2_error;

.
ENDPROC
.
TRAP correct_feeder

IF INTNO=feeder1_error THEN 
.
ELSE
.
ENDIF

.
ENDTRAP

An interrupt is generated when either of the inputs di1 or di2 is set to 1. A call is 
then made to the correct_feeder trap routine. The system variable INTNO is used 
in the trap routine to find out which type of interrupt has occurred.
RAPID reference part 2, Functions and data types A-Z 225



intnum  
 Data type
Limitations

The maximum number of active variables of type intnum at any one time (between 
CONNECT and IDelete) is limited to 40.The maximum number of interrupts, in the 
queue for execution of TRAP routine at any one time, is limited to 30.

Characteristics

Intnum is an alias data type for num and thus inherits its properties.

Related information

Described in:
Summary of interrupts RAPID Summary - Interrupts
Alias data types Basic Characteristics- 
Data Types
226 RAPID reference part 2, Functions and data types A-Z



 iodev
Data type  
iodev - Serial channels and files
Iodev (I/O device) is used for serial channels, such as printers and files.

Description

Data of the type iodev contains a reference to a file or serial channel. It can be linked 
to the physical unit by means of the instruction Open and then used for reading and 
writing.

Example

VAR iodev file;
.
Open “HOME:/LOGDIR/INFILE.DOC”, file\Read;
input := ReadNum(file);

The file INFILE.DOC is opened for reading. When reading from the file, file is 
used as a reference instead of the file name.

Characteristics

Iodev is a non-value data type.

Related information

Described in:
Communication via serial channels RAPID Summary - Communication
Configuration of serial channels User’s Guide - System Parameters
Characteristics of non-value data types Basic Characteristics - Data Types
RAPID reference part 2, Functions and data types A-Z 227



iodev  
 Data type
228 RAPID reference part 2, Functions and data types A-Z



 jointtarget
Data type  
jointtarget - Joint position data
Jointtarget is used to define the position that the robot and the external axes will move 
to with the instruction MoveAbsJ.

Description

Jointtarget defines each individual axis position, for both the robot and the external 
axes.

Components

robax (robot axes) Data type: robjoint

Axis positions of the robot axes in degrees.

Axis position is defined as the rotation in degrees for the respective axis (arm) in 
a positive or negative direction from the axis calibration position.

extax (external axes) Data type: extjoint

The position of the external axes.

The position is defined as follows for each individual axis (eax_a, eax_b ... 
eax_f):

- For rotating axes, the position is defined as the rotation in degrees from the cal-
ibration position.

- For linear axes, the position is defined as the distance in mm from the calibra-
tion position.

External axes eax_a ... are logical axes. How the logical axis number and the 
physical axis number are related to each other is defined in the system parame-
ters.

The value 9E9 is defined for axes which are not connected. If the axes defined in 
the position data differ from the axes that are actually connected on program exe-
cution, the following applies:

- If the position is not defined in the position data (value 9E9) the value will be 
ignored, if the axis is connected and not activated. But if the axis is activated it 
will result in error.

- If the position is defined in the position data yet the axis is not connected, the 
value is ignored.
RAPID reference part 2, Functions and data types A-Z 229



jointtarget  
 Data type
Examples

CONST jointtarget calib_pos := [ [ 0, 0, 0, 0, 0, 0], [ 0, 9E9, 9E9, 9E9, 9E9, 9E9] ];

The normal calibration position for IRB2400 is defined in calib_pos by the data 
type jointtarget. The normal calibration position 0 (degrees or mm) is also 
defined for the external logical axis a. The external axes b to f are undefined.

Structure

< dataobject of jointtarget >
< robax of robjoint >

< rax_1 of num >
< rax_2 of num >
< rax_3 of num >
< rax_4 of num >
< rax_5 of num >
< rax_6 of num >

< extax of extjoint >
< eax_a of num >
< eax_b of num >
< eax_c of num >
< eax_d of num >
< eax_e of num >
< eax_f of num >

Related information

Described in:
Move to joint position Instructions - MoveAbsJ
Positioning instructions RAPID Summary - Motion
Configuration of external axes User’s Guide - System Parameters
230 RAPID reference part 2, Functions and data types A-Z



 loaddata
Data type  
loaddata - Load data
Loaddata is used to describe loads attached to the mechanical interface of the robot 
(the robot’s mounting flange). 

Load data usually defines the payload (grip load is defined by the instruction Grip-
Load) of the robot, i.e. the load held in the robot gripper. The tool load is specified in 
the tool data (tooldata) which includes load data.

Description

Specified loads are used to set up a model of the dynamics of the robot so that the robot 
movements can be controlled in the best possible way.

It is important to always define the actual tool load and when used, the payload of the 
robot too. Incorrect definitions of load data can result in overloading of the robot 
mechanical structure.

When incorrect load data is specified, it can often lead to the following consequences:

- If the value in the specified load data is greater than that of the value of the true 
load;
-> The robot will not be used to its maximum capacity
-> Impaired path accuracy including a risk of overshooting
-> Risk of overloading the mechanical structure

- If the value in the specified load data is less than the value of the true load;
-> Impaired path accuracy including a risk of overshooting
-> Risk of overloading the mechanical structure

The payload is connected/disconnected using the instruction GripLoad.

Components

mass Data type: num

The weight of the load in kg.

cog (centre of gravity) Data type: pos

The centre of gravity of a tool load expressed in the wrist coordinate system. 
If a stationary tool is used, it means the centre of gravity for the tool holding the 
work object.

The centre of gravity of a payload expressed in the tool coordinate system. The 
object coordinate system when a stationary tool is used.
RAPID reference part 2, Functions and data types A-Z 231



loaddata  
 Data type
aom (axes of moment) Data type: orient

Tool load (Ref. to Figure 11)

The orientation of the coordinate system defined by the inertial axes of the tool 
load. Expressed in the wrist coordinate system as a quaternion (q1, q2, q3, q4). If 
a stationary tool is used, it means the inertial axes for the tool holding the work 
object.

The orientation of the tool load coordinate system must coincide with the orien-
tation of the wrist coordinate system. It must always be set to 1, 0, 0, 0.

Pay load (Ref. to figure 1 and 2)

The orientation of the coordinate system defined by the inertial axes of the pay-
load. Expressed in the tool coordinate system as a quaternion (q1, q2, q3, q4). The 
object coordinate system if a stationary tool is used.

The orientation of the payload coordinate system must coincide with the orienta-
tion of the wrist coordinate system. It must always be set to 1, 0, 0, 0.

Because of this limitation, the best way is to define the orientation of the tool 
coordinate system (tool frame) to coincide with the orientation of the wrist coor-
dinate system.

Figure 11  Restriction on the orientation of tool load and payload coordinate system.

X

X’

The wrist coordinate system
Y

Y’

Tool coordinate system

Tool load coordinate system -

Payload coordinate system -

IX’

IZ’

IY’

IX

IZ

IYZ

Z’

TCP

Inertial axes of tool load

Inertial axes of payload
232 RAPID reference part 2, Functions and data types A-Z



 loaddata
Data type  
Figure 12  The centre of gravity and inertial axes of the payload.

ix (inertia x) Data type: num

The moment of inertia of the load around the x-axis of the tool load or payload 
coordinate system in kgm2. 

Correct definition of the inertial moments will allow optimal utilisation of the 
path planner and axes control. This may be of special importance when handling 
large sheets of metal, etc. All inertial moments of inertia ix, iy and iz equal to 
0 kgm2 imply a point mass. 

Normally, the inertial moments must only be defined when the distance from the 
mounting flange to the centre of gravity is less than the dimension of the load 
(see Figure 13).

Figure 13  The moment of inertia must normally be defined when the distance 
is less than the load dimension.

Wrist coordinate system

Z

X

Y Tool coordinate system

Z’

X’

Y’

The centre of gravity of the payload

Gripper

Payload coordinate 

Payload

Inertial axes of payload
system -
 

Y

Z

X

x

payload

dimension

distance
RAPID reference part 2, Functions and data types A-Z 233



loaddata  
 Data type
iy (inertia y) Data type: num

The inertial moment of the load around the y-axis, expressed in kgm2. 

For more information, see ix.

iz (inertia z) Data type: num

The inertial moment of the load around the z-axis, expressed in kgm2. 

For more information, see ix.

Examples

PERS loaddata piece1 := [ 5, [50, 0, 50], [1, 0, 0, 0], 0, 0, 0];

The payload in Figure 11 is described using the following values:

- Weight 5 kg.
- The centre of gravity is x = 50, y = 0 and z = 50 mm in the tool coordinate sys-

tem.
- The payload is a point mass.

Set gripper;
WaitTime 0.3;
GripLoad piece1;

Connection of the payload, piece1, specified at the same time as the robot grips 
the load piece1.

Reset gripper;
WaitTime 0.3;
GripLoad load0;

Disconnection of a payload, specified at the same time as the robot releases a pay-
load.

Limitations

The payload should only be defined as a persistent variable (PERS) and not within a 
routine. Current values are then saved when storing the program on diskette and are 
retrieved on loading.

Arguments of the type load data in the GripLoad instruction should only be an entire 
persistent (not array element or record component).
234 RAPID reference part 2, Functions and data types A-Z



 loaddata
Data type  
Predefined data

The load load0 defines a payload, the weight of which is equal to 0 kg, i.e. no load at 
all. This load is used as the argument in the instruction GripLoad to disconnect a pay-
load.

The load load0 can always be accessed from the program, but cannot be changed (it is 
stored in the system module BASE).

PERS loaddata load0 := [ 0.001, [0, 0, 0.001], [1, 0, 0, 0],0, 0 ,0 ];

Structure

< dataobject of loaddata >
< mass of num >
< cog of pos >

< x of num >
< y of num >
< z of num >

< aom of orient >
< q1 of num >
< q2 of num >
< q3 of num >
< q4 of num >

< ix of num >
< iy of num >
< iz of num >

Related information

Described in:
Coordinate systems Motion and I/O Principles - Coordi-
nate Systems
Definition of tool loads Data Types - tooldata
Activation of payload Instructions - GripLoad
RAPID reference part 2, Functions and data types A-Z 235



loaddata  
 Data type
236 RAPID reference part 2, Functions and data types A-Z



 loadsession
Data type  
loadsession - Program load session
Loadsession is used to define different load sessions of RAPID program modules.

Description

Data of the type loadsession is used in the instructions StartLoad and WaitLoad, to 
identify the load session. Loadsession only contains a reference to the load session. 

Characteristics

Loadsession is a non-value data type and cannot be used in value-oriented operations.

Related information

Described in:
Loading program modules during execution Instructions - StartLoad, WaitLoad
Characteristics of non-value data types Basic Characteristics - Data Types
RAPID reference part 2, Functions and data types A-Z 237



loadsession  
 Data type
238 RAPID reference part 2, Functions and data types A-Z



 mecunit
Data type  
mecunit - Mechanical unit
Mecunit is used to define the different mechanical units which can be controlled and 
accessed from the robot and the program.

The names of the mechanical units are defined in the system parameters and, conse-
quently, must not be defined in the program.

Description

Data of the type mecunit only contains a reference to the mechanical unit. 

Limitations

Data of the type mecunit must not be defined in the program. The data type can, on the 
other hand, be used as a parameter when declaring a routine.

Predefined data

The mechanical units defined in the system parameters can always be accessed from 
the program (installed data).

Characteristics

Mecunit is a non-value data type. This means that data of this type does not permit 
value-oriented operations.

Related information

Described in:
Activating/Deactivating mechanical units Instructions - ActUnit, DeactUnit
Configuration of mechanical units User’s Guide - System Parameters
Characteristics of non-value data types Basic Characteristics - Data Types
RAPID reference part 2, Functions and data types A-Z 239



mecunit  
 Data type
240 RAPID reference part 2, Functions and data types A-Z



 motsetdata
Data type  
motsetdata - Motion settings data
Motsetdata is used to define a number of motion settings that affect all positioning 
instructions in the program:

- Max. velocity and velocity override
- Acceleration data
- Behavior around singular points
- Management of different robot configurations
- Override of path resolution
- Motion supervision
- Limitation of acceleration/deceleration
- Tool reorientation during circle path

This data type does not normally have to be used since these settings can only be set 
using the instructions VelSet, AccSet, SingArea, ConfJ, ConfL, PathResol, MotionSup, 
PathAccLim, CirPathMode and WorldAccLim.

The current values of these motion settings can be accessed using the system variable 
C_MOTSET.

Description

The current motion settings (stored in the system variable C_MOTSET) affect all 
movements. 

Components

vel.oride Data type: veldata/num

Velocity as a percentage of programmed velocity. 

vel.max Data type: veldata/num

Maximum velocity in mm/s.

acc.acc Data type: accdata/num

Acceleration and deceleration as a percentage of the normal values. 

acc.ramp Data type: accdata/num

The rate by which acceleration and deceleration increases as a percentage of the 
normal values. 
RAPID reference part 2, Functions and data types A-Z 241



motsetdata  
 Data type
sing.wrist Data type: singdata/bool

The orientation of the tool is allowed to deviate somewhat in order to prevent 
wrist singularity. 

sing.arm Data type: singdata/bool

The orientation of the tool is allowed to deviate somewhat in order to prevent arm 
singularity (not implemented).

sing.base Data type: singdata/bool

The orientation of the tool is not allowed to deviate. 

conf.jsup Data type: confsupdata/bool

Supervision of joint configuration is active during joint movement. 

conf.lsup Data type: confsupdata/bool

Supervision of joint configuration is active during linear and circular movement. 

conf.ax1 Data type: confsupdata/num

Maximum permitted deviation in degrees for axis 1 (not used in this version). 

conf.ax4 Data type: confsupdata/num

Maximum permitted deviation in degrees for axis 4 (not used in this version). 

conf.ax6 Data type: confsupdata/num

Maximum permitted deviation in degrees for axis 6 (not used in this version). 

pathresol Data type: num

Current override in percentage of the configured path resolution.

motionsup Data type: bool

Mirror RAPID status (TRUE = On and FALSE = Off) of motion supervision 
function.

tunevalue Data type: num

Current RAPID override as a percentage of the configured tunevalue for the 
motion supervision function.

acclim Data type: bool

Limitation of tool acceleration along the path. (TRUE = limitation and FALSE = 
no limitation).
242 RAPID reference part 2, Functions and data types A-Z



 motsetdata
Data type  
accmax Data type: num

TCP acceleration limitation in . If acclim is FALSE, the value is always set 
to -1.

decellim Data type: bool

Limitation of tool deceleration along the path. TRUE = limitation and FALSE = 
no limitation).

decelmax Data type: num

TCP deceleration limitation in . If decellim is FALSE, the value is always 
set to -1.

cirpathreori Data type: num

Tool reorientation during circle path: 
0 = Standard method with interpolation in path frame
1 = Modified method with interpolation in object frame
2 = Modified method with programmed tool orientation in CirPoint

worldacclim Data type: bool

Limitation of acceleration in world coordinate system. (TRUE = limitation and 
FALSE = no limitation).

worldaccmax Data type: num

Limitation of acceleration in world coordinate system in . If worldacclim is 
FALSE, the value is always set to -1.

Limitations

One and only one of the components sing.wrist, sing.arm or sing.base may have a 
value equal to TRUE.

Example

IF C_MOTSET.vel.oride > 50 THEN
...

ELSE
...

ENDIF

Different parts of the program are executed depending on the current velocity 
override.

m s2⁄

m s2⁄

m s2⁄
RAPID reference part 2, Functions and data types A-Z 243



motsetdata  
 Data type
Predefined data

C_MOTSET describes the current motion settings of the robot and can always be 
accessed from the program (installed data). C_MOTSET, on the other hand, can only 
be changed using a number of instructions, not by assignment.

The following default values for motion parameters are set

- at a cold start-up
- when a new program is loaded
- when starting program execution from the beginning.

PERS motsetdata C_MOTSET := [
[ 100, 500 ], -> veldata
[ 100, 100 ], -> accdata
[ FALSE, FALSE, TRUE ], -> singdata
[ TRUE, TRUE, 30, 45, 90], -> confsupdata
100 , -> path resolution
TRUE, -> motionsup
100, -> tunevalue
FALSE, -> acclim
-1, -> accmax
FALSE, -> decellim
-1, -> decelmax
0, -> cirpathreori
FALSE, -> worldacclim
-1]; -> worldaccmax
244 RAPID reference part 2, Functions and data types A-Z



 motsetdata
Data type  
Structure

<dataobject of motsetdata>
<vel of veldata > -> Affected by 
instruction VelSet

< oride of num >
< max of num >

<acc of accdata > -> Affected by 
instruction AccSet

< acc of num >
< ramp of num >

<sing of singdata > -> Affected by 
instruction SingArea

< wrist of bool >
< arm of bool >
< base of bool >

<conf of confsupdata > -> Affected by 
instructions ConfJ and ConfL

< jsup of bool >
<lsup of bool >
< ax1 of num >
< ax4 of num >
< ax6 of num >

<pathresol of num> -> Affected by 
instruction PathResol
<motionsup of bool> -> Affected by 
instruction MotionSup
<tunevalue of num> -> Affected by 
instruction MotionSup
<acclim of bool> -> Affected by 
instruction PathAccLim
<accmax of num> -> Affected by 
instruction PathAccLim
<decellim of bool> -> Affected by 
instruction PathAccLim
<decelmax of num> -> Affected by 
instruction PathAccLim
<cirpathreori of num> -> Affected by 
instruction CirPathMode
<worldacclim of bool> -> Affected by 
instruction WorldAccLim
<worldaccmax of num> -> Affected by 
instruction WorldAccLim
RAPID reference part 2, Functions and data types A-Z 245



motsetdata  
 Data type
Related information

Described in:

Instructions for setting motion parameters RAPID Summary - 
Motion Settings
246 RAPID reference part 2, Functions and data types A-Z



 num
Data type  
num - Numeric values (registers)
Num is used for numeric values; e.g. counters.

Description

The value of the num data type may be

- an integer; e.g. -5,
- a decimal number; e.g. 3.45.

It may also be written exponentially; e.g.2E3 (= 2*103 = 2000), 2.5E-2 (= 0.025).

Integers between -8388607 and +8388608 are always stored as exact integers.

Decimal numbers are only approximate numbers and should not, therefore, be used in 
is equal to or is not equal to comparisons. In the case of divisions, and operations using 
decimal numbers, the result will also be a decimal number; i.e. not an exact integer. 

E.g. a := 10;
b := 5;
IF a/b=2 THEN As the result of a/b is not an integer,

this condition is not necessarily 
... satisfied.

Example

VAR num reg1;
.

reg1 := 3;

reg1 is assigned the value 3.

a := 10 DIV 3;
b := 10 MOD 3;

Integer division where a is assigned an integer (=3) and b is assigned the
remainder (=1).
RAPID reference part 2, Functions and data types A-Z 247



num  
 Data type
Predefined data

The constant pi (π) is already defined in the system module BASE.

CONST num pi := 3.1415926;

The constants EOF_BIN and EOF_NUM are already defined in the system.

CONST num EOF_BIN := -1;

CONST num EOF_NUM := 9.998E36;

Related information

Described in:
Numeric expressions Basic Characteristics - Expressions
Operations using numeric values Basic Characteristics - Expressions
248 RAPID reference part 2, Functions and data types A-Z



 o_jointtarget
Data type  
o_jointtarget - Original joint position data
o_jointtarget (original joint target) is used in combination with the function Absolute 
Limit Modpos. When this function is used to modify a position, the original position is 
stored as a data of the type o_jointtarget.

Description

If the function Absolute Limit Modpos is activated and a named position in a movement 
instruction is modified with the function Modpos, then the original programmed posi-
tion is saved.

Example of a program before Modpos:

CONST jointtarget jpos40:= [[0, 0, 0, 0, 0, 0],
[0, 9E9, 9E9, 9E9, 9E9, 9E9]];

...
MoveAbsJ jpos40, v1000, z50, tool1;

The same program after ModPos in which the point jpos40 is corrected to 2 degrees for 
robot axis 1:

CONST jointtarget jpos40 := [[2, 0, 0, 0, 0, 0],
 [0, 9E9, 9E9, 9E9, 9E9, 9E9]];

CONST o_jointtarget o_jpos40 := [[0, 0, 0, 0, 0, 0],
[0, 9E9, 9E9, 9E9, 9E9, 9E9]];

...
MoveAbsJ jpos40, v1000, z50, tool1;

The original programmed point has now been saved in o_jpos40 (by the data type 
o_jointtarget) and the modified point saved in jpos40 (by the data type jointtarget). 

By saving the original programmed point, the robot can monitor that further Modpos 
of the point in question are within the acceptable limits from the original programmed 
point.

The fixed name convention means that an original programmed point with the name 
xxxxx is saved with the name o_xxxxx by using Absolute Limit Modpos.

Components

robax (robot axes) Data type: robjoint

Axis positions of the robot axes in degrees.

extax (external axes) Data type: extjoint

The position of the external axes.
RAPID reference part 2, Functions and data types A-Z 249



o_jointtarget  
 Data type
Structure

< dataobject of o_jointtarget >
< robax of robjoint>

< rax_1 of num >
< rax_2 of num >
< rax_3 of num >
< rax_4 of num >
< rax_5 of num >
< rax_6 of num >

< extax of extjoint >
< eax_a of num >
< eax_b of num >
< eax_c of num >
< eax_d of num >
< eax_e of num >
< eax_f of num >

Related information

Described in:
Position data Data Types - Jointtarget
Configuration of Limit Modpos User’s Guide - System Parameters
250 RAPID reference part 2, Functions and data types A-Z



 o_robtarget
Data type  
o_robtarget - Original position data
o_robtarget (original robot target) is used in combination with the function Absolute 
Limit Modpos. When this function is used to modify a position, the original position is 
stored as a data of the type o_robtarget.

Description

If the function Absolute Limit Modpos is activated and a named position in a movement 
instruction is modified with the function Modpos, then the original programmed posi-
tion is saved.

Example of a program before Modpos:

CONST robtarget p50 := [[500, 500, 500], [1, 0, 0, 0], [1, 1, 0, 0],
[500, 9E9, 9E9, 9E9, 9E9, 9E9] ];

...
MoveL p50, v1000, z50, tool1;

The same program after ModPos in which the point p50 is corrected to 502 in the x-
direction:

CONST robtarget p50 := [[502, 500, 500], [1, 0, 0, 0], [1, 1, 0, 0],
[500, 9E9, 9E9, 9E9, 9E9, 9E9] ];

CONST o_robtarget o_p50 := [[500, 500, 500], [1, 0, 0, 0], [1, 1, 0, 0],
[ 500, 9E9, 9E9, 9E9, 9E9, 9E9] ];

...
MoveL p50, v1000, z50, tool1;

The original programmed point has now been saved in o_p50 (by the data type 
o_robtarget) and the modified point saved in p50 (by the data type robtarget). 

By saving the original programmed point, the robot can monitor that further Modpos 
of the point in question are within the acceptable limits from the original programmed 
point.

The fixed name convention means that an original programmed point with the name 
xxxxx is saved with the name o_xxxxx by using Absolute Limit Modpos.
RAPID reference part 2, Functions and data types A-Z 251



o_robtarget  
 Data type
Components

trans (translation) Data type: pos

The position (x, y and z) of the tool centre point expressed in mm. 

rot (rotation) Data type: orient

The orientation of the tool, expressed in the form of a quaternion (q1, q2, q3 and 
q4).

robconf (robot configuration) Data type: confdata

The axis configuration of the robot (cf1, cf4, cf6 and cfx).

extax (external axes) Data type: extjoint

The position of the external axes.

Structure

< dataobject of o_robtarget >
< trans of pos >

< x of num >
< y of num >
< z of num >

< rot of orient >
< q1 of num >
< q2 of num >
< q3 of num >
< q4 of num >

< robconf of confdata >
< cf1 of num >
< cf4 of num >
< cf6 of num >
< cfx of num >

< extax of extjoint >
< eax_a of num >
< eax_b of num >
< eax_c of num >
< eax_d of num >
< eax_e of num >
< eax_f of num >
252 RAPID reference part 2, Functions and data types A-Z



 o_robtarget
Data type  
Related information

Described in:
Position data Data Types - Robtarget
Configuration of Limit Modpos User’s Guide - System Parameters
RAPID reference part 2, Functions and data types A-Z 253



o_robtarget  
 Data type
254 RAPID reference part 2, Functions and data types A-Z



 opnum
Data type  
opnum - Comparison operator
opnum is used to represent an operator for comparisons in arguments to RAPID func-
tions or instructions.

Description

An opnum constant is intended to be used to define the type of comparison, when 
checking values in generic instructions.

Example

TriggCheckIO checkgrip, 100, airok, EQ, 1, intno1;

Predefined data

The following symbolic constants of the data type opnum are predefined and can be 
used to define the type of comparison used for instance in instruction TriggCheckIO.

Characteristics

opnum is an alias data type for num and consequently inherits its characteristics.

Related information

Described in:
Data types in general, alias data types Basic Characteristics - Data Types 

 Value Symbolic constant Comment

1 LT Less than

2 LTEQ Less than or equal to

3 EQ Equal to

4 NOTEQ Not equal to

5 GTEQ Greater than or equal to

6 GT Greather than
RAPID reference part 2, Functions and data types A-Z 255



opnum  
 Data type
256 RAPID reference part 2, Functions and data types A-Z



 orient
Data type  
orient - Orientation
Orient is used for orientations (such as the orientation of a tool) and rotations (such as 
the rotation of a coordinate system). 

Description

The orientation is described in the form of a quaternion which consists of four ele-
ments: q1, q2, q3 and q4. For more information on how to calculate these, see below.

Components

q1 Data type: num

Quaternion 1.

q2 Data type: num

Quaternion 2.

q3 Data type: num

Quaternion 3.

q4 Data type: num

Quaternion 4.

Example

VAR orient orient1;
.
orient1 := [1, 0, 0, 0];

The orient1 orientation is assigned the value q1=1, q2-q4=0; this corresponds to 
no rotation.

Limitations

The orientation must be normalised; i.e. the sum of the squares must equal 1:
q1

2 q2
2 q3

2 q4
2+ + + 1=
RAPID reference part 2, Functions and data types A-Z 257



orient  
 Data type
What is a Quaternion?

The orientation of a coordinate system (such as that of a tool) can be described by a 
rotational matrix that describes the direction of the axes of the coordinate system in 
relation to a reference system (see Figure 14).

Figure 14  The rotation of a coordinate system is described by a quaternion.

The rotated coordinate systems axes (x, y, z) are vectors which can be expressed in the 
reference coordinate system as follows:

x = (x1, x2, x3)
y = (y1, y2, y3)
z = (z1, z2, z3)

This means that the x-component of the x-vector in the reference coordinate system 
will be x1, the y-component will be x2, etc.

These three vectors can be put together in a matrix, a rotational matrix, where each of 
the vectors form one of the columns:

A quaternion is just a more concise way to describe this rotational matrix; the quater-
nions are calculated based on the elements of the rotational matrix:

z

y

x
y

z

x

Reference
coordinate
system

Rotated
coordinate
system

x1 y1 z1
x2 y2 z2
x3 y3 z3
258 RAPID reference part 2, Functions and data types A-Z



 orient
Data type  
sign q2 = sign (y3-z2)

sign q3 = sign (z1-x3)

sign q4 = sign (x2-y1)

Example 1

A tool is orientated so that its Z’-axis points straight ahead (in the same direction as the 
X-axis of the base coordinate system). The Y’-axis of the tool corresponds to the Y-
axis of the base coordinate system (see Figure 15). How is the orientation of the tool 
defined in the position data (robtarget)?

The orientation of the tool in a programmed position is normally related to the coordi-
nate system of the work object used. In this example, no work object is used and the 
base coordinate system is equal to the world coordinate system. Thus, the orientation 
is related to the base coordinate system.

Figure 15  The direction of a tool in accordance with example 1.

The axes will then be related as follows:

- x’ = -z = (0, 0, -1)
- y’ = y = (0, 1, 0)
- z’ = x = (1, 0, 0)

Which corresponds to the following rotational matrix:

q1
x1 y2 z3 1+ + +

2
-----------------------------------------=

q2
x1 y2– z3– 1+

2
----------------------------------------=

q3
y2 x1– z3– 1+

2
----------------------------------------=

q4
z3 x1– y2– 1+

2
----------------------------------------=

Z´

X´

X

Z

0 0 1
0 1 0
1– 0 0
RAPID reference part 2, Functions and data types A-Z 259



orient  
 Data type
The rotational matrix provides a corresponding quaternion:

sign q3 = sign (1+1) = +

Example 2

The direction of the tool is rotated 30o about the X’- and Z’-axes in relation to the wrist 
coordinate system (see Figure 15). How is the orientation of the tool defined in the tool 
data?

Figure 16  The direction of the tool in accordance with example 2.

The axes will then be related as follows:

- x’ = (cos30o, 0, -sin30o)
- x’ = (0, 1, 0)
- x’ = (sin30o, 0, cos30o)

Which corresponds to the following rotational matrix: 

q1 0 1 0 1+ + +
2

----------------------------------- 2
2

------- 0.707= = =

q2 0 1– 0– 1+
2

---------------------------------- 0= =

q3 1 0– 0– 1+
2

---------------------------------- 2
2

------- 0.707= = =

q4 0 0– 1– 1+
2

---------------------------------- 0= =

Z´
X´

X

Z

30cos ° 0 30sin °
0 1 0
30sin– ° 0 30cos °
260 RAPID reference part 2, Functions and data types A-Z



 orient
Data type  
The rotational matrix provides a corresponding quaternion:

sign q3 = sign (sin30o+sin30o) = +

Structure

<dataobject of orient>
<q1 of num>
<q2 of num>
<q3 of num>
<q4 of num>

Related information

Described in:
Operations on orientations Basic Characteristics - Expressions

q1 30cos ° 1 30°cos 1+ + +
2

---------------------------------------------------------------- 0.965926= =

q2 30°cos 1– 30°cos– 1+
2

---------------------------------------------------------------- 0= =

q3 1 30°cos– 30°cos– 1+
2

---------------------------------------------------------------- 0.258819= =

q4 30°cos 30°cos– 1– 1+
2

---------------------------------------------------------------- 0= =
RAPID reference part 2, Functions and data types A-Z 261



orient  
 Data type
262 RAPID reference part 2, Functions and data types A-Z



 pos
Data type  
pos - Positions (only X, Y and Z)
Pos is used for positions (only X, Y and Z). 

The robtarget data type is used for the robot’s position including the orientation of the 
tool and the configuration of the axes.

Description

Data of the type pos describes the coordinates of a position: X, Y and Z.

Components

x Data type: num

The X-value of the position.

y Data type: num

The Y-value of the position.

z Data type: num

The Z-value of the position.

Examples

VAR pos pos1;
.
pos1 := [500, 0, 940];

The pos1 position is assigned the value: X=500 mm, Y=0 mm, Z=940 mm.

pos1.x := pos1.x + 50;

The pos1 position is shifted 50 mm in the X-direction.

Structure

<dataobject of pos>
<x of num>
<y of num>
<z of num>
RAPID reference part 2, Functions and data types A-Z 263



pos  
 Data type
Related information

Described in:
Operations on positions Basic Characteristics - Expressions
Robot position including orientation Data Types- robtarget
264 RAPID reference part 2, Functions and data types A-Z



 pose
Data type  
pose - Coordinate transformations
Pose is used to change from one coordinate system to another. 

Description

Data of the type pose describes how a coordinate system is displaced and rotated 
around another coordinate system. The data can, for example, describe how the tool 
coordinate system is located and oriented in relation to the wrist coordinate system.

Components

trans (translation) Data type: pos

The displacement in position (x, y and z) of the coordinate system.

rot (rotation) Data type: orient

The rotation of the coordinate system.

Example

VAR pose frame1;
.
frame1.trans := [50, 0, 40];
frame1.rot := [1, 0, 0, 0];

The frame1 coordinate transformation is assigned a value that corresponds to a 
displacement in position, where X=50 mm, Y=0 mm, Z=40 mm; there is, how-
ever, no rotation.

Structure

<dataobject of pose>
<trans of pos>
<rot of orient>

Related information

Described in:
What is a Quaternion? Data Types - orient
RAPID reference part 2, Functions and data types A-Z 265



pose  
 Data type
266 RAPID reference part 2, Functions and data types A-Z



 progdisp
Data type  
progdisp - Program displacement
Progdisp is used to store the current program displacement of the robot and the exter-
nal axes.

This data type does not normally have to be used since the data is set using the instruc-
tions PDispSet, PDispOn, PDispOff, EOffsSet, EOffsOn and EOffsOff. It is only used 
to temporarily store the current value for later use.

Description

The current values for program displacement can be accessed using the system variable 
C_PROGDISP.

For more information, see the instructions PDispSet, PDispOn, EOffsSet and EOffsOn.

Components

pdisp (program displacement) Data type: pose

The program displacement for the robot, expressed using a translation and an ori-
entation. The translation is expressed in mm.

eoffs (external offset) Data type: extjoint

The offset for each of the external axes. If the axis is linear, the value is expressed 
in mm; if it is rotating, the value is expressed in degrees.

Example

VAR progdisp progdisp1;
.
SearchL sen1, psearch, p10, v100, tool1;
PDispOn \ExeP:=psearch, *, tool1;
EOffsOn \ExeP:=psearch, *;
.
progdisp1:=C_PROGDISP;
PDispOff;
EOffsOff;
.
PDispSet progdisp1.pdisp;
EOffsSet progdisp1.eoffs;

First, a program displacement is activated from a searched position. Then, it is 
temporarily deactivated by storing the value in the variable progdisp1 and, later 
on, re-activated using the instructions PDispSet and EOffsSet.
RAPID reference part 2, Functions and data types A-Z 267



progdisp  
 Data type
Predefined data

The system variable C_PROGDISP describes the current program displacement of the 
robot and external axes, and can always be accessed from the program (installed data). 
C_PROGDISP, on the other hand, can only be changed using a number of instructions, 
not by assignment. 

Structure

< dataobject of progdisp >
<pdisp of pose>

< trans of pos >
< x of num >
< y of num >
< z of num >

< rot of orient >
< q1 of num >
< q2 of num >
< q3 of num >
< q4 of num >

< eoffs of extjoint >
< eax_a of num >
< eax_b of num >
< eax_c of num >
< eax_d of num >
< eax_e of num >
< eax_f of num >

Related information

Described in:

Instructions for defining program displacementRAPID Summary - Motion Settings

Coordinate systems Motion and I/O Principles - 
Coordinate Systems
268 RAPID reference part 2, Functions and data types A-Z



 robjoint
Data type  
robjoint - Joint position of robot axes
Robjoint is used to define the axis position in degrees of the robot axes.

Description

Data of the type robjoint is used to store axis positions in degrees of the robot axes 1 
to 6. Axis position is defined as the rotation in degrees for the respective axis (arm) in 
a positive or negative direction from the axis calibration position.

Components

rax_1 (robot axis 1) Data type: num

The position of robot axis 1 in degrees from the calibration position.

...

rax_6 (robot axis 6) Data type: num

The position of robot axis 6 in degrees from the calibration position.

Structure

< dataobject of robjoint >
< rax_1 of num >
< rax_2 of num >
< rax_3 of num >
< rax_4 of num >
< rax_5 of num >
< rax_6 of num > 

Related information

Described in:
Joint position data Data Types - jointtarget
Move to joint position Instructions - MoveAbsJ
RAPID reference part 2, Functions and data types A-Z 269



robjoint  
 Data type
270 RAPID reference part 2, Functions and data types A-Z



 robtarget
Data type  
robtarget - Position data
Robtarget (robot target) is used to define the position of the robot and external axes.

Description

Position data is used to define the position in the positioning instructions to which the 
robot and external axes are to move. 

As the robot is able to achieve the same position in several different ways, the axis con-
figuration is also specified. This defines the axis values if these are in any way ambig-
uous, for example:

- if the robot is in a forward or backward position,
- if axis 4 points downwards or upwards,
- if axis 6 has a negative or positive revolution.

The position is defined based on the coordinate system of the work object, includ-
ing any program displacement. If the position is programmed with some other 
work object than the one used in the instruction, the robot will not move in the 
expected way. Make sure that you use the same work object as the one used when 
programming positioning instructions. Incorrect use can injure someone or dam-
age the robot or other equipment.

Components

trans (translation) Data type: pos

The position (x, y and z) of the tool centre point expressed in mm. 

The position is specified in relation to the current object coordinate system, 
including program displacement. If no work object is specified, this is the world 
coordinate system.

rot (rotation) Data type: orient

The orientation of the tool, expressed in the form of a quaternion (q1, q2, q3 and 
q4).

The orientation is specified in relation to the current object coordinate system, 
including program displacement. If no work object is specified, this is the world 
coordinate system.
RAPID reference part 2, Functions and data types A-Z 271



robtarget  
 Data type
robconf (robot configuration) Data type: confdata

The axis configuration of the robot (cf1, cf4, cf6 and cfx). This is defined in the 
form of the current quarter revolution of axis 1, axis 4 and axis 6. The first posi-
tive quarter revolution 0 to 90 o is defined as 0. The component cfx is only used 
for the robot model IRB5400.

For more information, see data type confdata.

extax (external axes) Data type: extjoint

The position of the external axes.

The position is defined as follows for each individual axis (eax_a, eax_b ... 
eax_f):

- For rotating axes, the position is defined as the rotation in degrees from the cal-
ibration position.

- For linear axes, the position is defined as the distance in mm from the calibra-
tion position.

External axes eax_a ... are logical axes. How the logical axis number and the 
physical axis number are related to each other is defined in the system parame-
ters.

The value 9E9 is defined for axes which are not connected. If the axes defined in 
the position data differ from the axes that are actually connected on program exe-
cution, the following applies:

- If the position is not defined in the position data (value 9E9), the value will be 
ignored, if the axis is connected and not activated. But if the axis is activated, it 
will result in an error.

- If the position is defined in the position data although the axis is not connected, 
the value is ignored.

Examples

CONST robtarget p15 := [ [600, 500, 225.3], [1, 0, 0, 0], [1, 1, 0, 0],
[ 11, 12.3, 9E9, 9E9, 9E9, 9E9] ];

A position p15 is defined as follows:

- The position of the robot: x = 600, y = 500 and z = 225.3 mm in the object coor-
dinate system.

- The orientation of the tool in the same direction as the object coordinate system.
- The axis configuration of the robot: axes 1 and 4 in position 90-180o, axis 6 in 

position 0-90o.
- The position of the external logical axes, a and b, expressed in degrees or mm 

(depending on the type of axis). Axes c to f are undefined.
272 RAPID reference part 2, Functions and data types A-Z



 robtarget
Data type  
VAR robtarget p20;
. . .
p20 := CRobT();
p20 := Offs(p20,10,0,0);

The position p20 is set to the same position as the current position of the robot by call-
ing the function CRobT. The position is then moved 10 mm in the x-direction.

Limitations

When using the configurable edit function Absolute Limit Modpos, the number of char-
acters in the name of the data of the type robtarget, is limited to 14 (in other cases 16).

Structure

< dataobject of robtarget >
< trans of pos >

< x of num >
< y of num >
< z of num >

< rot of orient >
< q1 of num >
< q2 of num >
< q3 of num >
< q4 of num >

< robconf of confdata >
< cf1 of num >
< cf4 of num >
< cf6 of num >
< cfx of num >

< extax of extjoint >
< eax_a of num >
< eax_b of num >
< eax_c of num >
< eax_d of num >
< eax_e of num >
< eax_f of num >
RAPID reference part 2, Functions and data types A-Z 273



robtarget  
 Data type
Related information

Described in:
Positioning instructions RAPID Summary - Motion
Coordinate systems Motion and I/O Principles - Coordi-
nate Systems
Handling configuration data Motion and I/O Principles - Robot 

Configuration
Configuration of external axes User’s Guide - System Parameters
What is a quaternion? Data Types - Orient
274 RAPID reference part 2, Functions and data types A-Z



 shapedata
Data type Advanced functions
shapedata - World zone shape data
shapedata is used to describe the geometry of a world zone.

Description

World zones can be defined in 4different geometrical shapes:

- a straight box, with all sides parallel to the world coordinate system and defined 
by a WZBoxDef instruction

- a sphere, defined by a WZSphDef instruction
- a cylinder, parallel to the z axis of the world coordinate system and defined by 

a WZCylDef instruction
- a joint space area for robot and/or external axes, defined by the instruction 

WZHomeJointDef or WZLimJointDef

The geometry of a world zone is defined by one of the previous instructions and the 
action of a world zone is defined by the instruction WZLimSup or WZDOSet.

Example

VAR wzstationary pole;
VAR wzstationary conveyor;
...
PROC ...

VAR shapedata volume;
...
WZBoxDef \Inside, volume, p_corner1, p_corner2;
WZLimSup \Stat, conveyor, volume;
WZCylDef \Inside, volume, p_center, 200, 2500;
WZLimSup \Stat, pole, volume;

ENDPROC

A conveyor is defined as a box and the supervision for this area is activated. A 
pole is defined as a cylinder and the supervision of this zone is also activated. If 
the robot reaches one of these areas, the motion is stopped.

Characteristics

shapedata is a non-value data type.
RAPID reference part 2, Functions and data types A-Z 275



shapedata  
Advanced functions Data type
Related information

Described in:
World Zones Motion and I/O Principles - 

World Zones
World zone shape Data Types - shapedata
Define box-shaped world zone Instructions - WZBoxDef
Define sphere-shaped world zone Instructions - WZSphDef
Define cylinder-shaped world zone Instructions - WZCylDef
Define a world zone for home joints Instruction - WZHomeJointDef
Define a world zone for limit joints Instruction - WZLimJointDef
Activate world zone limit supervision Instructions - WZLimSup
Activate world zone digital output set Instructions - WZDOSet
276 RAPID reference part 2, Functions and data types A-Z



 signalxx
Data type  
signalxx - Digital and analog signals
Data types within signalxx are used for digital and analog input and output signals.

The names of the signals are defined in the system parameters and are consequently 
not to be defined in the program.

Description

Data type Used for
signalai analog input signals
signalao analog output signals
signaldi digital input signals
signaldo digital output signals
signalgi groups of digital input signals
signalgo groups of digital output signals

Variables of the type signalxo only contain a reference to the signal. The value is set 
using an instruction, e.g. DOutput. 

Variables of the type signalxi contain a reference to a signal as well as the possibility 
to retrieve the value directly in the program, if used in value context.

The value of an input signal can be read directly in the program, e.g. :

! Digital input
IF di1 = 1 THEN ...

! Digital group input
IF gi1 = 5 THEN ...

! Analog input
IF ai1 > 5.2 THEN ...

Limitations

Data of the data type signalxx must not be defined in the program. However, if this is 
in fact done, an error message will be displayed as soon as an instruction or function 
that refers to this signal is executed. The data type can, on the other hand, be used as a 
parameter when declaring a routine.
RAPID reference part 2, Functions and data types A-Z 277



signalxx  
 Data type
Predefined data

The signals defined in the system parameters can always be accessed from the program 
by using the predefined signal variables (installed data). It should however be noted 
that if other data with the same name is defined, these signals cannot be used.

Characteristics

Signalxo is a non-value data type. Thus, data of this type does not permit value-
oriented operations.

Signalxi is a semi-value data type.

Related information

Described in:
Summary input/output instructions RAPID Summary - 

Input and Output Signals
Input/Output functionality in general Motion and I/O Principles -
I/O Principles
Configuration of I/O User’s Guide - System Parameters
Characteristics of non-value data types Basic Characteristics - Data Types
278 RAPID reference part 2, Functions and data types A-Z



 speeddata
Data type  
speeddata - Speed data
Speeddata is used to specify the velocity at which both the robot and the external axes 
move.

Description 

Speed data defines the velocity: 

- at which the tool centre point moves,
- of the reorientation of the tool,
- at which linear or rotating external axes move.

When several different types of movement are combined, one of the velocities often 
limits all movements. The velocity of the other movements will be reduced in such a 
way that all movements will finish executing at the same time. 

The velocity is also restricted by the performance of the robot. This differs, depending 
on the type of robot and the path of movement. 

Components

v_tcp (velocity tcp) Data type: num

The velocity of the tool centre point (TCP) in mm/s.

If a stationary tool or coordinated external axes are used, the velocity is specified 
relative to the work object.

v_ori (velocity orientation) Data type: num

The velocity of reorientation about the TCP expressed in degrees/s. 

If a stationary tool or coordinated external axes are used, the velocity is specified 
relative to the work object.

v_leax (velocity linear external axes)Data type: num

The velocity of linear external axes in mm/s.

v_reax (velocity rotational external axes)Data type: num

The velocity of rotating external axes in degrees/s.
RAPID reference part 2, Functions and data types A-Z 279



speeddata  
 Data type
Example

VAR speeddata vmedium := [ 1000, 30, 200, 15 ];

The speed data vmedium is defined with the following velocities:

- 1000 mm/s for the TCP.
- 30 degrees/s for reorientation of the tool.
- 200 mm/s for linear external axes.
- 15 degrees/s for rotating external axes.

vmedium.v_tcp := 900;

The velocity of the TCP is changed to 900 mm/s.
280 RAPID reference part 2, Functions and data types A-Z



 speeddata
Data type  
Predefined data

A number of speed data are already defined in the system module BASE. 

Name TCP speed Orientation Linear ext. axis Rotating ext. axis
v5 5 mm/s 500o/s 5000 mm/s 1000o/s
v10 10 mm/s 500o/s 5000 mm/s 1000o/s
v20 20 mm/s 500o/s 5000 mm/s 1000o/s
v30 30 mm/s 500o/s 5000 mm/s 1000o/s
v40 40 mm/s 500o/s 5000 mm/s 1000o/s
v50 50 mm/s 500o/s 5000 mm/s 1000o/s
v60 60 mm/s 500o/s 5000 mm/s 1000o/s
v80 80 mm/s 500o/s 5000 mm/s 1000o/s
v100 100 mm/s 500o/s 5000 mm/s 1000o/s
v150 150 mm/s 500o/s 5000 mm/s 1000o/s
v200 200 mm/s 500o/s 5000 mm/s 1000o/s
v300 300 mm/s 500o/s 5000 mm/s 1000o/s
v400 400 mm/s 500o/s 5000 mm/s 1000o/s
v500 500 mm/s 500o/s 5000 mm/s 1000o/s
v600 600 mm/s 500o/s 5000 mm/s 1000o/s
v800 800 mm/s 500o/s 5000 mm/s 1000o/s
v1000 1000 mm/s 500o/s 5000 mm/s 1000o/s
v1500 1500 mm/s 500o/s 5000 mm/s 1000o/s
v2000 2000 mm/s 500o/s 5000 mm/s 1000o/s
v2500 2500 mm/s 500o/s 5000 mm/s 1000o/s
v3000 3000 mm/s 500o/s 5000 mm/s 1000o/s
v4000 4000 mm/s 500o/s 5000 mm/s 1000o/s
v5000 5000 mm/s 500o/s 5000 mm/s 1000o/s
v6000 6000 mm/s 500o/s 5000 mm/s 1000o/s
v7000 7000 mm/s 500o/s 5000 mm/s 1000o/s
vmax *) 500o/s 5000 mm/s 1000o/s

*) Max. TCP speed for the used robot type and normal pratical TCP values.
The RAPID function MaxRobSpeed returns the same value.
If use of extreme big TCP values in tool frame, create own speeddata with
bigger TCP speed than returned by MaxRobSpeed.
RAPID reference part 2, Functions and data types A-Z 281



speeddata  
 Data type
Structure

< dataobject of speeddata >
< v_tcp of num >
< v_ori of num >
< v_leax of num >
< v_reax of num >

Related information

Described in:
Positioning instructions RAPID Summary - Motion
Motion/Speed in general Motion and I/O Principles - Position-
ing during Program Execution
Defining maximum velocity Instructions - VelSet
Max. TCP speed for this robot Function - MaxRobSpeed
Configuration of external axes User’s Guide - System Parameters
Motion performance Product Specification
282 RAPID reference part 2, Functions and data types A-Z



 stoppointdata
Data type  
stoppointdata - Stop point data
Stoppointdata is used to specify how a position is to be terminated, i.e. how close to 
the programmed position the axes must be before moving towards the next position.

Description 

A position can be terminated either in the form of a fly-by point or a stop point.

A fly-by point means that the programmed position is never reached. A zone is speci-
fied in the instruction for the movement, defining a corner path. Instead of heading for 
the programmed position, the direction of the motion is formed into the corner path 
before the position is reached. See data type zonedata.

A stop point means that the robot and external axes must reach the specified position 
before the robot/external axes continues with the next movement. The robot is consid-
ered to have reached a stop point when the convergence criteria of the point are satis-
fied. The convergence criteria are speed and position. It is also possible to specify 
timing criteria. For stop point fine, see also data type zonedata.

Three types of stop points can be defined by the stoppointdata.

- The in position type of stop point is defined as a percentage of the convergence 
criteria (position and speed) for the predefined stop point fine. The in-position 
type also uses a minimum and a maximum time. The robot waits for at least the 
minimum time, and at most the maximum time for the position and speed cri-
teria to be satisfied.

- The stop time type of stop point always waits in the stop point for the given 
time.

- The follow time type of stop point is a special type of stop point used to coor-
dinate the robot movement with a conveyor.

The stoppointdata also determines how the movement shall be synchronized with the 
RAPID execution. If the movement is synchronized, the RAPID execution waits for a 
“in pos” event when the robot is in position. If the movement is not synchronized, the 
RAPID execution gets a “prefetch” event almost a half second before the physical 
robot reach the programmed position. When the program executer gets an “in pos” or 
a “prefetch” event it continues with the next instruction. When the “prefetch” event 
arrives, the robot still have a long way to move. When the “in pos” event arrives the
robot is close to the programmed position. Note that for the type stop time and follow 
time, the next instruction starts its execution at the same time as the stop time and fol-
low time, respectively, start to count down. But for the type in position, the next 
instruction is started when the convergence criteria is fulfilled.

If use of move instructions with argument \Conc, no synchronization at all is done, so 
the actual move instruction will be ready at once.
RAPID reference part 2, Functions and data types A-Z 283



stoppointdata  
 Data type
Figure 17  Termination of a stop point

In the figure above, the termination of the stop points is described. The robots speed 
does not decrease linear. The robot servo is always ahead the physical robot. It is shown 
as the constant lag in the figure above. The constant lag is about 0.1 seconds. The tim-
ing elements of stoppointdata use the reference speed as trigger. When the reference 
speed is zero the time measurement starts. Therefore the time in the timing elements 
always include the constant lag. Consequently there is no sense in using values less 
than the constant lag.

Components

type (type of stop point) Data type: stoppoint

Defines the type of stoppoint.

1 (inpos) The movement terminates as an in-position type of stop point.
Enables the inpos element in stoppointdata.
The zone data in the instruction is not used, use fine or z0.

2 (stoptime) The movement terminates as a stop-time type of stop point.
Enables the stoptime element in stoppointdata.
The zone data in the instruction is not used, use fine or z0.

3 (followtime) The movement terminates as a conveyor follow-time type of 
fine point. The zone data in the instruction is used when the robot leaves the con-
veyor.
Enables the followtime element in stoppointdata.

Data type stoppoint is an alias data type for num. It is used to choose the type of stop 
point and which data elements to use in the stoppointdata. Predefined constants are:

Speed

Time

In pos
Reference speed

Robot speed

Stop time

Min/max time
Constant lag

Follow time
284 RAPID reference part 2, Functions and data types A-Z



 stoppointdata
Data type  
progsynch (program synchronisation) Data type: bool

Synchronisation with RAPID program execution.

- TRUE-> The movement is synchronized with RAPID execution.
The program do not start to execute the next instruction until the stop point has 
been reached.

- FALSE-> The movement is not synchronized with RAPID execution. The pro-
gram starts the execution of the next instruction before the stop point has been 
reached.

If use of move instructions with argument \Conc, no synchronization at all is 
done independent of the data in progsynch, so the actual move instruction will 
always be ready at once.

inpos.position (position condition for TCP) Data type: num

The position condition (the radius) for the TCP in percent of a normal fine stop 
point.

inpos.speed (speed condition for TCP) Data type: num

The speed condition for the TCP in percent of a normal fine stop point.

inpos.mintime (minimum wait time) Data type: num

The minimum wait time in seconds before in position. Used to make the robot 
wait at least the specified time in the point. Maximum value is 20.0 seconds.

inpos.maxtime (maximum wait time) Data type: num

The maximum wait time in seconds for convergence criteria to be satisfied. Used 
to assure that the robot does not get stuck in the point, if the speed and position 
conditions are set too tight. Maximum value is 20.0 seconds.

stoptime (stop time) Data type: num

The time in seconds, the TCP stands still in position before starting the next 
movement. Maximum value is 20.0 seconds.

 Value Symbolic constant Comment

1 inpos In position type number

2 stoptime Stop time type number

3 fllwtime Follow time type number
RAPID reference part 2, Functions and data types A-Z 285



stoppointdata  
 Data type
followtime (follow time) Data type: num

The time in seconds the TCP follows the conveyor.

signal Data type: string

Reserved for future use.

relation Data type: opnum

Reserved for future use.

checkvalue Data type: num

Reserved for future use.

Examples

Inpos

VAR stoppointdata my_inpos := [ inpos, TRUE, [ 25, 40, 0.1, 5], 0, 0, ““, 0, 0];
MoveL *, v1000, z0 \Inpos:=my_inpos, grip4;

The stop point data my_inpos is defined by means of the following characteris-
tics:

- The type of stop point is in-position type, inpos.
- The stop point will be synchronized with the RAPID program execution, TRUE.
- The stop point distance criteria is 25% of the distance defined for the stop point 

fine, 25. 
- The stop point speed criteria is 40% of the speed defined for the stop point fine, 

40.
- The minimum time to wait before convergence is 0,1 s, 0.1.
- The maximum time to wait on convergence is 5 s, 5.

The robot move towards the programmed position until one of the criteria posi-
tion or speed is satisfied.

my_inpos.inpos.position := 40;
MoveL *, v1000, z0 \Inpos:=my_inpos, grip4;

The stop point distance criteria is adjusted to 40%.

Stoptime

VAR stoppointdata my_stoptime := [ stoptime, FALSE, [ 0, 0, 0, 0], 1.45, 0, ““, 0, 
0];
286 RAPID reference part 2, Functions and data types A-Z



 stoppointdata
Data type  
MoveL *, v1000, z0\Inpos:=my_stoptime, grip4;

The stop point data my_stoptime is defined by means of the following charac-
teristics:

- The type of stop point is stop-time type, stoptime.
- The stop point will not be synchronized with the RAPID program execution, 

FALSE.
- The wait time in position is 1.45 s.

The robot moves towards the programmed position until the prefetch event 
arrives. The next RAPID instruction executes. If it is a move-instruction, the 
robot stops for 1.45 seconds before the next movement starts.

my_stoptime.stoptime := 6.66;
MoveL *, v1000, z0 \Inpos:=my_stoptime, grip4;

The stop point stop time is adjusted to 6.66 seconds If the next RAPID instruc-
tion is a move-instruction, the robot stops for 6.66 s.

Followtime

VAR stoppointdata my_followtime := [ fllwtime, TRUE, [ 0, 0, 0, 0], 0, 0.5, ““, 0, 
0];
MoveL *, v1000, z10 \Inpos:=my_followtime, grip6;

The stop point data my_followtime is defined by means of the following char-
acteristics:

- The type of stop point is follow-time type, fllwtime.
- The stop point will be synchronized with the RAPID program execution, 

TRUE.
- The stop point follow time is 0.5 s, 0.5.

The robot will follow the conveyor for 0.5 s before leaving it with the zone 10 
mm, z10.

my_followtime.followtime := 0.4;

The stop point follow time is adjusted to 0.4 s.
RAPID reference part 2, Functions and data types A-Z 287



stoppointdata  
 Data type
Predefined data

A number of stop point data are already defined in the system module BASE.

In position stop points

Name ProgsynchPositionSpeed Mintime Maxtime Stoptime Followtime
inpos20 TRUE 20% 20% 0 s 20 s - -
inpos50 TRUE 50% 50% 0 s 20 s - -
inpos100 TRUE 100% 100% 0 s 20 s - -
(inpos100 has same convergence criteria as stop point fine)

Stop time stop points

Name ProgsynchPositionSpeed Mintime Maxtime Stoptime Followtime
stoptime0_5 FALSE - - - - 0.5 s -
stoptime1_0 FALSE - - - - 1.0 s -
stoptime1_5 FALSE - - - - 1.5 s -

Follow time stop points

Name ProgsynchPositionSpeed Mintime Maxtime Stoptime Followtime
fllwtime0_5 TRUE - - - - - 0.5 s
fllwtime1_0 TRUE - - - - - 1.0 s
fllwtime1_5 TRUE - - - - - 1.5 s

Structure

< data object of stoppointdata >
< type of stoppoint>
< progsynch of bool >
< inpos of inposdata >

< position of num >
< speed of num >
< mintime of num >
< maxtime of num >

< stoptime of num >
< followtime of num >
< signal of string >
< relation of opnum >
< checkvalue of num >
288 RAPID reference part 2, Functions and data types A-Z



 stoppointdata
Data type  
Related information

Described in:
Positioning instructions RAPID Summary - Motion
Movements/Paths in general Motion and I/O Principles - Position-
ing during Program Execution 
Configuration of external axes User’s Guide - System Parameters
Fly-by points Data Types - zonedata
RAPID reference part 2, Functions and data types A-Z 289



stoppointdata  
 Data type
290 RAPID reference part 2, Functions and data types A-Z



 string
Data type  
string - Strings
String is used for character strings.

Description

A character string consists of a number of characters (a maximum of 80) enclosed by 
quotation marks (“”), 

e.g. “This is a character string”.

If the quotation marks are to be included in the string, they must be written twice,

e.g. “This string contains a ““character”.

If the back slash are to be included in the string, it must be written twice,

e.g. “This string contains a \\ character”.

Example

VAR string text;
.
text := “start welding pipe 1”;
TPWrite text;

The text start welding pipe 1 is written on the teach pendant.

Limitations

A string may have from 0 to 80 characters; inclusive of extra quotation marks or back 
slash.

A string may contain any of the characters specified by ISO 8859-1 as well as control 
characters (non-ISO 8859-1 characters with a numeric code between 0-255).
RAPID reference part 2, Functions and data types A-Z 291



string  
 Data type
Predefined data

A number of predefined string constants are available in the system and can be used 
together with string functions.

Name Character set

STR_DIGIT <digit> ::=
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

STR_UPPER <upper case letter> ::=
A | B | C | D | E | F | G | H | I | J
| K | L | M | N | O | P | Q | R | S | T
| U | V | W | X | Y | Z | À | Á | Â | Ã
| Ä | Å | Æ | Ç | È | É | Ê | Ë | Ì | Í
| Î | Ï | 1) | Ñ | Ò | Ó | Ô | Õ | Ö | Ø
| Ù | Ú | Û | Ü | 2) | 3) 

STR_LOWER <lower case letter> ::=
a | b | c | d | e | f | g | h | i | j
| k | l | m | n | o | p | q | r | s | t
| u | v | w | x | y | z | à | á | â | ã
| ä | å | æ | ç | è | é | ê | ë | ì | í
| î | ï | 1) | ñ | ò | ó | ô | õ | ö | ø
| ù | ú | û | ü | 2) | 3) | ß | ÿ

STR_WHITE <blank character> ::=

1) Icelandic letter eth.
2) Letter Y with acute accent.
3) Icelandic letter thorn.

The following constants are already defined in the system module BASE:

CONST string diskhome := “HOME:”;

! For old programs from S4C system
CONST string ram1disk := “HOME:”;

CONST string disktemp := “TEMP:”;

CONST string flp1 := “flp1:”;

CONST string stEmpty := “”;

Related information

Described in:
Operations using strings Basic Characteristics - Expressions
String values Basic Characteristics - Basic Elements
292 RAPID reference part 2, Functions and data types A-Z



 symnum
Data type  
symnum - Symbolic number
Symnum is used to represent an integer with a symbolic constant.

Description

A symnum constant is intended to be used when checking the return value from the 
functions OpMode and RunMode. See example below.

Example

IF RunMode() = RUN_CONT_CYCLE THEN
.
.
ELSE
.
.
ENDIF

Predefined data

The following symbolic constants of the data type symnum are predefined and can be 
used when checking return values from the functions OpMode and RunMode

 Value Symbolic constant Comment

0 RUN_UNDEF Undefined running mode

1 RUN_CONT_CYCLE Continuous or cycle running mode

2 RUN_INSTR_FWD Instruction forward running mode

3 RUN_INSTR_BWD Instruction backward running mode

4 RUN_SIM Simulated running mode

Value Symbolic constant Comment

0 OP_UNDEF Undefined operating mode

1 OP_AUTO Automatic operating mode

2 OP_MAN_PROG Manual operating mode max. 250 mm/s

3 OP_MAN_TEST Manual operating mode full speed, 100%
RAPID reference part 2, Functions and data types A-Z 293



symnum  
 Data type
Characteristics

Symnum is an alias data type for num and consequently inherits its characteristics.

Related information

Described in:
Data types in general, alias data types Basic Characteristics - Data Types 
294 RAPID reference part 2, Functions and data types A-Z



 System Data
Data type  
System Data
System data is the internal data of the robot that can be accessed and read by the pro-
gram. It can be used to read the current status, e.g. the current maximum velocity. 

The following table contains a list of all system data. 

Name Description Data Type Changed by See also

C_MOTSET Current motion settings, i.e.:
- max. velocity and velocity over-
ride
- max. acceleration
- movement about singular points
- monitoring the axis configuration
- path resolution
- motion supervision with tunevalue
-reduction of TCP acceleration/
deceleration along the movement 
path
-modification of the tool orienta-
tion during circle interpolation

motsetdata Instructions
- VelSet
- AccSet
- SingArea
- ConfL,ConfJ
- PathResol
- MotionSup
- PathAccLim
- CirPathReori

Data Types - motsetdata
Instructions - VelSet
Instructions - AccSet
Instructions - SingArea 
Instructions - ConfL, ConfJ
Instructions - PathResol
Instructions - MotionSup
Instructions - PathAccLim
Instructions - CirPathReori

C_PROGDISP Current program displacement for 
robot and external axes.

progdisp Instructions
- PDispSet
- PDispOn
- PDispOff
- EOffsSet 
- EOffsOn
- EOffsOff

Data Types - progdisp
Instructions - PDispSet
Instructions - PDispOn
Instructions - PDispOff
Instructions - EOffsSet
Instructions - EOffsOn
Instructions - EOffsOff

ERRNO The latest error that occurred errnum The robot Data Types - errnum
RAPID Summary -
Error Recovery

INTNO The latest interrupt that occurred intnum The robot Data Types - intnum
RAPID Summary -Inter-
rupts
RAPID reference part 2, Functions and data types A-Z 295



System Data  
 Data type
296 RAPID reference part 2, Functions and data types A-Z



 taskid
Data type  
taskid - Task identification
Taskid is used to identify available program tasks in the system.

The names of the program tasks are defined in the system parameters and, conse-
quently, must not be defined in the program.

Description

Data of the type taskid only contains a reference to the program task. 

Limitations

Data of the type taskid must not be defined in the program. The data type can, on the 
other hand, be used as a parameter when declaring a routine.

Predefined data

The program tasks defined in the system parameters can always be accessed from the 
program (installed data). 

For all program tasks in the system, predefined variables of the data type taskid will be 
available. The variable identity will be "taskname"+"Id", e.g. for MAIN task the vari-
able identity will be MAINId, TSK1 - TSK1Id etc.

Characteristics

Taskid is a non-value data type. This means that data of this type does not permit value-
oriented operations.

Related information

Described in:
Saving program modules Instruction - Save
Configuration of program tasks User’s Guide - System Parameters
Characteristics of non-value data types Basic Characteristics - Data Types
RAPID reference part 2, Functions and data types A-Z 297



taskid  
 Data type
298 RAPID reference part 2, Functions and data types A-Z



 testsignal
Data type  
testsignal - Test signal
The data type testsignal is used when a test of the robot motion system is performed.

Description

A number of predefined test signals are available in the robot system. The testsignal 
data type is available in order to simplify programming of instruction TestSignDefine.

Examples

TestSignDefine 2, speed, Orbit, 2, 0;

speed is a constant of the testsignal data type.

Predefined data

The following test signals for external manipulator axes are predefined in the system.
All data is in SI units and measured on the motor side of the axis.

CONST testsignal speed           :=  6; ! rad/s
CONST testsignal torque_ref     :=  9; ! Nm
CONST testsignal resolver_angle  :=  1; ! rad
CONST testsignal speed_ref      :=  4; ! rad/s
CONST testsignal dig_input1  := 102; ! 0 or 1
CONST testsignal dig_input2  := 103; ! 0 or 1

Characteristics

Testsignal is an alias data type for num and consequently inherits its characteristics.

Related information

Described in:
Define test signal Instructions - TestSignDefine
Read test signal Functions - TestSignRead
Reset test signals Instructions - TestSignReset
RAPID reference part 2, Functions and data types A-Z 299



testsignal  
 Data type
300 RAPID reference part 2, Functions and data types A-Z



 tooldata
Data type  
tooldata - Tool data
Tooldata is used to describe the characteristics of a tool, e.g. a welding gun or a grip-
per. 

If the tool is fixed in space (a stationary tool), common tool data is defined for this tool 
and the gripper holding the work object.

Description

Tool data affects robot movements in the following ways:

- The tool centre point (TCP) refers to a point that will satisfy the specified path 
and velocity performance. If the tool is reorientated or if coordinated external 
axes are used, only this point will follow the desired path at the programmed 
velocity.

- If a stationary tool is used, the programmed speed and path will relate to the 
work object.

- Programmed positions refer to the position of the current TCP and the orienta-
tion in relation to the tool coordinate system. This means that if, for example, 
a tool is replaced because it is damaged, the old program can still be used if the 
tool coordinate system is redefined.

Tool data is also used when jogging the robot to:

- Define the TCP that is not to move when the tool is reorientated.
- Define the tool coordinate system in order to facilitate moving in or rotating 

about the tool directions.

It is important to always define the actual tool load and when used, the payload of the 
robot too.

Incorrect definitions of load data can result in overloading of the robot mechani-
cal structure.

When incorrect tool load data is specified, it can often lead to the following conse-
quences:

- If the value in the specified load is greater than that of the value of the true load;
-> The robot will not be used to its maximum capacity
-> Impaired path accuracy including a risk of overshooting

- If the value in the specified load is less than the value of the true load;
-> Impaired path accuracy including a risk of overshooting
-> Risk of overloading the mechanical structure
RAPID reference part 2, Functions and data types A-Z 301



tooldata  
 Data type
Components

robhold (robot hold) Data type: bool

Defines whether or not the robot is holding the tool:

- TRUE-> The robot is holding the tool.
- FALSE -> The robot is not holding the tool, i.e. a stationary tool. 

tframe (tool frame) Data type: pose

The tool coordinate system, i.e.:

- The position of the TCP (x, y and z) in mm, expressed in the wrist coordinate 
system (See figure 1).

- The orientation of the tool coordinate system, expressed in the wrist coordinate 
system as a quaternion (q1, q2, q3 and q4) (See figure 1).

If a stationary tool is used, the definition is defined in relation to the world coor-
dinate system.

If the direction of the tool is not specified, the tool coordinate system and the 
wrist coordinate system will coincide. 

Figure 18  Definition of the tool coordinate system.

Z’

Z

X
X’

The control hole

The tool coordinate system

The wrist coordinate system
Y

Y’
TCP
302 RAPID reference part 2, Functions and data types A-Z



 tooldata
Data type  
tload (tool load) Data type: loaddata

The load of the tool, i.e.:

- The weight of the tool in kg.
- The centre of gravity of the tool (x, y and z) in mm, expressed in the wrist coor-

dinate system
- The orientation of the tool load coordinate system expressed in the wrist coor-

dinate system, defining the inertial axes of the tool. 
The orientation of the tool load coordinate system must coincide with the ori-
entation of the wrist coordinate system. This must always be set to 1, 0, 0, 0.

- The moments of inertia of the tool relative to its centre of mass around the 
tool load coordinate axes in kgm2. 
If all inertial components are defined as being 0 kgm2, the tool is handled as a 
point mass.

Figure 19  Tool load parameter definitions

For more information (such as coordinate system for stationary tool or restric-
tions), see the data type loaddata.

If a stationary tool is used, the load of the gripper holding the work object must 
be defined.

Note that only the load of the tool is to be specified. The payload handled by a 
gripper is connected and disconnected by means of the instruction GripLoad. 

Z’

X
X’

The wrist coordinate system
Y

Y’
TCP

Tool coordinate system

Tool load coordinate system -

IX

IZ

IY

Z Inertial axes of tool load
RAPID reference part 2, Functions and data types A-Z 303



tooldata  
 Data type
Examples

PERS tooldata gripper := [ TRUE, [[97.4, 0, 223.1], [0.924, 0, 0.383 ,0]], 
[5, [23, 0, 75], [1, 0, 0, 0], 0, 0, 0]];

The tool in Figure 18 is described using the following values:

- The robot is holding the tool.
- The TCP is located at a point 223.1 mm straight out from axis 6 and 97.4 mm 

along the X-axis of the wrist coordinate system.
- The X and Z directions of the tool are rotated 45o in relation to the wrist coor-

dinate system.
- The tool weighs 5 kg.
- The centre of gravity is located at a point 75 mm straight out from axis 6 and 

23 mm along the X-axis of the wrist coordinate system.
- The load can be considered a point mass, i.e. without any moment of inertia.

gripper.tframe.trans.z := 225.2;

The TCP of the tool, gripper, is adjusted to 225.2 in the z-direction.

Limitations

The tool data should be defined as a persistent variable (PERS) and should not be 
defined within a routine. The current values are then saved when the program is stored 
on diskette and are retrieved on loading.

Arguments of the type tool data in any motion instruction should only be an entire per-
sistent (not array element or record component).

Predefined data

The tool tool0 defines the wrist coordinate system, with the origin being the centre of 
the mounting flange. Tool0 can always be accessed from the program, but can never be 
changed (it is stored in system module BASE).

PERS tooldata tool0 := [ TRUE, [ [0, 0, 0], [1, 0, 0 ,0] ], 
[0.001, [0, 0, 0.001], [1, 0, 0, 0], 0, 0, 0] ];
304 RAPID reference part 2, Functions and data types A-Z



 tooldata
Data type  
Structure

< dataobject of tooldata >
< robhold of bool >
< tframe of pose >

< trans of pos >
< x of num >
< y of num >
< z of num >

< rot of orient >
< q1 of num >
< q2 of num >
< q3 of num >
< q4 of num >

< tload of loaddata >
< mass of num >
< cog of pos >

< x of num >
< y of num >
< z of num >

< aom of orient >
< q1 of num >
< q2 of num >
< q3 of num >
< q4 of num >

< ix of num >
< iy of num >
< iz of num >

Related information

Described in:
Positioning instructions RAPID Summary - Motion
Coordinate systems Motion and I/O Principles - Coordi-
nate Systems
Definition of payload Instructions - Gripload
Definition of load Data types - Load data
RAPID reference part 2, Functions and data types A-Z 305



tooldata  
 Data type
306 RAPID reference part 2, Functions and data types A-Z



 tpnum
Data type  
tpnum - Teach pendant window number
tpnum is used to represent the Teach Pendant Window number with a symbolic con-
stant.

Description

A tpnum constant is intended to be used in instruction TPShow. See example below.

Example

TPShow TP_PROGRAM;

The Production Window will be active if the system is in AUTO mode and the 
Program Window will be active if the system is in MAN mode, after execution 
of this instruction.

Predefined data

The following symbolic constants of the data type tpnum are predefined and can be 
used in instruction TPShow:

Characteristics

tpnum is an alias data type for num and consequently inherits its characteristics.

 Value Symbolic constant Comment

1 TP_PROGRAM AUTO: Production Window 
MAN: Program Window

2 TP_LATEST Latest used Teach Pendant Window

3 TP_SCREENVIEWER Screen Viewer window, if this option is active
RAPID reference part 2, Functions and data types A-Z 307



tpnum  
 Data type
Related information

Described in:
Data types in general, alias data types Basic Characteristics - Data Types
Communicating using the teach pendant RAPID Summary - Communication
Switch window on the teach pendant Instructions - TPShow
308 RAPID reference part 2, Functions and data types A-Z



 triggdata
Data type  
triggdata - Positioning events - trigg
Triggdata is used to store data about a positioning event during a robot movement.

A positioning event can take the form of setting an output signal or running an interrupt 
routine at a specific position along the movement path of the robot.

Description

To define the conditions for the respective measures at a positioning event, variables 
of the type triggdata are used. The data contents of the variable are formed in the pro-
gram using one of the instructions TriggIO or TriggInt, and are used by one of the 
instructions TriggL, TriggC or TriggJ.

Example

VAR triggdata gunoff;

TriggIO gunoff, 5 \DOp:=gun, off;

TriggL p1, v500, gunoff, fine, gun1;

The digital output signal gun is set to the value off when the TCP is at a position 
5 mm before the point p1.

Characteristics

Triggdata is a non-value data type.

Related information

Described in:
Definition of triggs Instructions - TriggIO, TriggInt
Use of triggs Instructions - TriggL, TriggC,

 TriggJ
Characteristics of non-value data types Basic Characteristics- Data Types
RAPID reference part 2, Functions and data types A-Z 309



triggdata  
 Data type
310 RAPID reference part 2, Functions and data types A-Z



 trapdata
Data type Advanced functions
trapdata - Interrupt data for current TRAP
trapdata (trap data) is used to contain the interrupt data that caused the current TRAP 
routine to be executed.

To be used in TRAP routines generated by instruction IError, before use of the instruc-
tion ReadErrData.

Description

Data of the type trapdata represents internal information related to the interrupt that 
caused the current trap routine to be executed.
Its content depends on the type of interrupt.

Example

VAR errdomain err_domain;
VAR num err_number;
VAR errtype err_type;
VAR trapdata err_data;
.
TRAP trap_err

GetTrapData err_data;
ReadErrData err_data, err_domain, err_number, err_type;

ENDTRAP

When an error is trapped to the trap routine trap_err, the error domain, the error 
number, and the error type are saved into appropriate non-value variables of type 
trapdata.

Characteristics

trapdata is a non-value data type.
RAPID reference part 2, Functions and data types A-Z 311



trapdata  
Advanced functions Data type
Related information

Described in:
Summary of interrupts RAPID Summary - Interrupts
More information on interrupt management Basic Characteristics - Interrupts
Non value data types Basic Characteristics - Data Types
Orders an interrupt on errors Instructions - IError
Get interrupt data for current TRAP Instructions- GetTrapData
Gets information about an error Instructions - ReadErrData
312 RAPID reference part 2, Functions and data types A-Z



 tunetype
Data type  
tunetype - Servo tune type
Tunetype is used to represent an integer with a symbolic constant.

Description

A tunetype constant is intended to be used as an argument to the instruction TuneServo. 
See example below.

Example

TuneServo MHA160R1, 1, 110 \Type:= TUNE_KP;

Predefined data

The following symbolic constants of the data type tunetype are predefined and can be 
used as argument for the instruction TuneServo.

Characteristics

Tunetype is an alias data type for num and consequently inherits its characteristics.

Value Symbolic constant Comment

0 TUNE_DF Reduces overshoots

1 TUNE_KP Affects position control gain

2 TUNE_KV Affects speed control gain

3 TUNE_TI Affects speed control integration time

4 TUNE_FRIC_LEV Affects friction compensation level

5 TUNE_FRIC_RAMP Affects friction compensation ramp

6 TUNE_DG Reduces overshoots

7 TUNE_DH Reduces vibrations with heavy loads

8 TUNE_DI Reduces path errors

9 TUNE_DK Only for ABB internal use

10 TUNE_DL Only for ABB internal use
RAPID reference part 2, Functions and data types A-Z 313



tunetype  
 Data type
Related information

Described in:
Data types in general, alias data types Basic Characteristics - Data Types
Use of data type tunetype Instructions - TuneServo
314 RAPID reference part 2, Functions and data types A-Z



 wobjdata
Data type  
wobjdata - Work object data
Wobjdata is used to describe the work object that the robot welds, processes, moves 
within, etc.

Description 

If work objects are defined in a positioning instruction, the position will be based on 
the coordinates of the work object. The advantages of this are as follows:

- If position data is entered manually, such as in off-line programming, the values 
can often be taken from a drawing.

- Programs can be reused quickly following changes in the robot installation. If, 
for example, the fixture is moved, only the user coordinate system has to be 
redefined.

- Variations in how the work object is attached can be compensated for. For this, 
however, some sort of sensor will be required to position the work object.

If a stationary tool or coordinated external axes are used the work object must be 
defined, since the path and velocity would then be related to the work object instead of 
the TCP.

Work object data can also be used for jogging:

- The robot can be jogged in the directions of the work object.
- The current position displayed is based on the coordinate system of the work 

object.

Components

robhold (robot hold) Data type: bool

Defines whether or not the robot is holding the work object:

- TRUE-> The robot is holding the work object, i.e. using a stationary tool.
- FALSE -> The robot is not holding the work object, i.e. the robot is holding the 

tool.

ufprog (user frame programmed) Data type: bool

Defines whether or not a fixed user coordinate system is used:

- TRUE -> Fixed user coordinate system.
- FALSE-> Movable user coordinate system, i.e. coordinated external axes are 

used.
RAPID reference part 2, Functions and data types A-Z 315



wobjdata  
 Data type
ufmec (user frame mechanical unit) Data type: string

The mechanical unit with which the robot movements are coordinated. Only 
specified in the case of movable user coordinate systems (ufprog is FALSE).

Specified with the name that is defined in the system parameters, e.g. "orbit_a".

uframe (user frame) Data type: pose

The user coordinate system, i.e. the position of the current work surface or fixture 
(see Figure 20):

- The position of the origin of the coordinate system (x, y and z) in mm.
- The rotation of the coordinate system, expressed as a quaternion (q1, q2, q3, 

q4).

If the robot is holding the tool, the user coordinate system is defined in the world 
coordinate system (in the wrist coordinate system if a stationary tool is used).

When coordinated external axes are used (ufprog is FALSE), the user coordinate 
system is defined in the system parameters.

oframe (object frame) Data type: pose

The object coordinate system, i.e. the position of the current work object (see Fig-
ure 20):

- The position of the origin of the coordinate system (x, y and z) in mm.
- The rotation of the coordinate system, expressed as a quaternion (q1, q2, q3, 

q4).

The object coordinate system is defined in the user coordinate system.

Figure 20  The various coordinate systems of the robot (when the robot is holding the tool).

Tool coordinates

Object coordinates

Base coordinates
Z

Y

X
World coordinates

User coordinates
Z

Z

Y
Y

X

X

X

Y

Z
Z

X

Y

TCP
316 RAPID reference part 2, Functions and data types A-Z



 wobjdata
Data type  
Example

PERS wobjdata wobj2 :=[ FALSE, TRUE, "", [ [300, 600, 200], [1, 0, 0 ,0] ],
[ [0, 200, 30], [1, 0, 0 ,0] ] ];

The work object in Figure 20 is described using the following values:

- The robot is not holding the work object. 
- The fixed user coordinate system is used.
- The user coordinate system is not rotated and the coordinates of its origin are 

x= 300, y = 600 and z = 200 mm in the world coordinate system.
- The object coordinate system is not rotated and the coordinates of its origin are 

x= 0, y= 200 and z= 30 mm in the user coordinate system.

wobj2.oframe.trans.z := 38.3;

- The position of the work object wobj2 is adjusted to 38.3 mm in the z-direction.

Limitations

The work object data should be defined as a persistent variable (PERS) and should not 
be defined within a routine. The current values are then saved when the program is 
stored on diskette and are retrieved on loading.

Arguments of the type work object data in any motion instruction should only be an 
entire persistent (not array element or record component).

Predefined data

The work object data wobj0 is defined in such a way that the object coordinate system 
coincides with the world coordinate system. The robot does not hold the work object.

Wobj0 can always be accessed from the program, but can never be changed (it is stored 
in system module BASE). 

PERS wobjdata wobj0 := [ FALSE, TRUE, "", [ [0, 0, 0], [1, 0, 0 ,0] ], 
[ [0, 0, 0], [1, 0, 0 ,0] ] ];
RAPID reference part 2, Functions and data types A-Z 317



wobjdata  
 Data type
Structure

< dataobject of wobjdata >
< robhold of bool >
< ufprog of bool>
< ufmec of string >
< uframe of pose >

< trans of pos >
< x of num >
< y of num >
< z of num >

< rot of orient >
< q1 of num >
< q2 of num >
< q3 of num >
< q4 of num >

< oframe of pose >
< trans of pos >

< x of num >
< y of num >
< z of num >

< rot of orient >
< q1 of num >
< q2 of num >
< q3 of num >
< q4 of num >

Related information

Described in:
Positioning instructions RAPID Summary - Motion
Coordinate systems Motion and I/O Principles - Coordi-
nate Systems
Coordinated external axes Motion and I/O Principles - Coordi-
nate Systems
Calibration of coordinated external axes User’s Guide - System Parameters
318 RAPID reference part 2, Functions and data types A-Z



 wzstationary
Data type Advanced functions
wzstationary - Stationary world zone data
wzstationary (world zone stationary) is used to identify a stationary world zone and 
can only be used in an event routine connected to the event POWER ON.

A world zone is supervised during robot movements both during program execution 
and jogging. If the robot’s TCP reaches the world zone or if the robot/external axes 
reaches the world zone in joints , the movement is stopped or a digital output signal is 
set or reset.

Description

A wzstationary world zone is defined and activated by a WZLimSup or a WZDOSet 
instruction.

WZLimSup or WZDOSet gives the variable or the persistent of data type stationary a 
numeric value. The value identifies the world zone.

A stationary world zone is always active and is only erased by a warm start (switch 
power off then on, or change system parameters). It is not possible to deactivate, acti-
vate or erase a stationary world zone via RAPID instructions.

Stationary world zones should be active from power on and should be defined in a 
POWER ON event routine or a semistatic task.

Example

VAR wzstationary conveyor;
...
PROC ...

VAR shapedata volume;
...
WZBoxDef \Inside, volume, p_corner1, p_corner2;
WZLimSup \Stat, conveyor, volume;

ENDPROC

A conveyor is defined as a straight box (the volume below the belt). If the robot 
reaches this volume, the movement is stopped.
RAPID reference part 2, Functions and data types A-Z 319



wzstationary  
Advanced functions Data type
Limitations

A wzstationary data can be defined as a variable (VAR) or as a persistent (PERS). 
It can be global in task or local within module, but not local within a routine.

Arguments of the type wzstationary should only be entire data (not array element or 
record component).

An init value for data of the type wzstationary is not used by the control system. When 
there is a need to use a persistent variable in a multi-tasking system, set the init value 
to 0 in both tasks,
e.g. PERS wzstationary share_workarea := [0];

Example

For a complete example see instruction WZLimSup.

Characteristics

wzstationary is an alias data type of wztemporary and inherits its characteristics.

Related information

Described in:
World Zones Motion and I/O Principles - 

World Zones
World zone shape Data Types - shapedata
Temporary world zone Data Types - wztemporary
Activate world zone limit supervision Instructions - WZLimSup
Activate world zone digital output set Instructions - WZDOSet
320 RAPID reference part 2, Functions and data types A-Z



 wztemporary
Data type  
wztemporary - Temporary world zone data
wztemporary (world zone temporary) is used to identify a temporary world zone and 
can be used anywhere in the RAPID program for the MAIN task.

A world zone is supervised during robot movements both during program execution 
and jogging. If the robot’s TCP reaches the world zone or if the robot/external axes 
reaches the world zone in joints, the movement is stopped or a digital output signal is 
set or reset.

Description

A wztemporary world zone is defined and activated by a WZLimSup or a WZDOSet 
instruction.

WZLimSup or WZDOSet gives the variable or the persistent of data type wztemporary 
a numeric value. The value identifies the world zone.

Once defined and activated, a temporary world zone can be deactivated by 
WZDisable, activated again by WZEnable, and erased by WZFree.

All temporary world zones in the MAIN task are automatically erased and all data 
objects of type wztemporary in the MAIN task are set to 0:

- when a new program is loaded in the MAIN task
- when starting program execution from the beginning in the MAIN task

Example

VAR wztemporary roll;
...
PROC ...

VAR shapedata volume;
CONST pos t_center := [1000, 1000, 1000];
...
WZCylDef \Inside, volume, t_center, 400, 1000;
WZLimSup \Temp, roll, volume;

ENDPROC

A wztemporary variable, roll, is defined as a cylinder. If the robot reaches this 
volume, the movement is stopped.
RAPID reference part 2, Functions and data types A-Z 321



wztemporary  
 Data type
Limitations

A wztemporary data can be defined as a variable (VAR) or as a persistent (PERS). 
It can be global in a task or local within a module, but not local within a routine.

Arguments of the type wztemporary must only be entire data, not an array element or 
record component.

A temporary world zone must only be defined (WZLimSup or WZDOSet) and free 
(WZFree) in the MAIN task. Definitions of temporary world zones in the background 
would affect the program execution in the MAIN task The instructions WZDisable and 
WZEnable can be used in the background task. When there is a need to use a persistent 
variable in a multi-tasking system, set the init value to 0 in both tasks,
e.g. PERS wztemporary share_workarea := [0];

Example

For a complete example see instruction WZDOSet.

Structure

<dataobject of wztemporary>
<wz of num>

Related information

Described in:
World Zones Motion and I/O Principles - 

World Zones
World zone shape Data Types - shapedata
Stationary world zone Data Types - wzstationary
Activate world zone limit supervision Instructions - WZLimSup
Activate world zone digital output set Instructions - WZDOSet
Deactivate world zone Instructions - WZDisable
Activate world zone Instructions - WZEnable
Erase world zone Instructions - WZFree
322 RAPID reference part 2, Functions and data types A-Z



 zonedata
Data type  
zonedata - Zone data
Zonedata is used to specify how a position is to be terminated, i.e. how close to the 
programmed position the axes must be before moving towards the next position.

Description 

A position can be terminated either in the form of a stop point or a fly-by point.

A stop point means that the robot and external axes must reach the specified position 
(stand still) before program execution continues with the next instruction. It is also pos-
sible to define stop points other than the predefined fine. The stop criteria, that tells if 
the robot is considered to have reached the point, can be manipulated using the stop-
pointdata.

A fly-by point means that the programmed position is never attained. 
Instead, the direction of motion is changed before the position is reached. 
Two different zones (ranges) can be defined for each position:

- The zone for the TCP path.
- The extended zone for reorientation of the tool and for external axes.

Figure 21  The zones for a fly-by point.

Zones function in the same way during joint movement, but the zone size may differ 
somewhat from the one programmed. 

The zone size cannot be larger than half the distance to the closest position (forwards 
or backwards). If a larger zone is specified, the robot automatically reduces it.

The zone for Programmed 
position

The extended zone

the TCP path 

Start of TCP corner path

Start of reorientation
towards next position
RAPID reference part 2, Functions and data types A-Z 323



zonedata  
 Data type
The zone for the TCP path

A corner path (parabola) is generated as soon as the edge of the zone is reached 
(see Figure 21). 

The zone for reorientation of the tool

Reorientation starts as soon as the TCP reaches the extended zone. The tool is 
reoriented in such a way that the orientation is the same leaving the zone as it 
would have been in the same position if stop points had been programmed. Reori-
entation will be smoother if the zone size is increased, and there is less of a risk 
of having to reduce the velocity to carry out the reorientation.

Figure 22  Three positions are programmed, the last with different tool orientation.

Figure 23  If all positions were stop points, program execution would look like this.

Figure 24  If the middle position was a fly-by point, program execution would look like this

The zone for external axes

External axes start to move towards the next position as soon as the TCP reaches 
the extended zone. In this way, a slow axis can start accelerating at an earlier 
stage and thus execute more evenly.

Reduced zone

With large reorientations of the tool or with large movements of the external 
axes, the extended zone and even the TCP zone can be reduced by the robot. The 
zone will be defined as the smallest relative size of the zone based upon the zone 
components (see next page) and the programmed motion.

Zone size
324 RAPID reference part 2, Functions and data types A-Z



 zonedata
Data type  
Figure 25  Example of reduced zone for reorientation of the tool to 36% of the motion due 
to zone_ori.

Figure 26  Example of reduced zone for reorientation of the tool and TCP path to 15% of 
the motion due to zone_ori.

When external axes are active they affect the relative sizes of the zone according to 
these formulas:

NOTE: If the TCP zone is reduced because of zone_ori, zone_leax or zone_reax the 
path planner enters a mode that can handle the case of no TCP movement. If there is a 
TCP movement when in this mode the speed is not compensated for the curvature of 
the path in a corner zone. For instance, this will cause a 30% speed reduction in a 90 
degree corner. If this is a problem, increase the limiting zone component.

pzone_ori pzone_tcp

The relative sizes of the zone are

________________________
angle of reorientation P1 - P2

zone_ori

P2

= 9o/25o = 36%

90 mm 60 mm

9o

MoveL with 200 mm movements

zone_ori

________________________
length of movement P1 - P2

pzone_tcp
= 60/200 = 30%

P1
of the tool, 25o reorientation of
the tool and with zone z60

________________________
length of movement P1 - P2

pzone_ori
= 90/200 = 45%

pzone_ori pzone_tcp

The relative sizes of the zone are

________________________
angle of reorientation P1 - P2

zone_ori

P2

= 9o/60o = 15%

90 mm 60 mm
9o

MoveL with 200 mm movements

zone_ori

________________________
length of movement P1 - P2

pzone_tcp
= 60/200 = 30%

P1

of the tool, 60o reorientation of
the tool and with zone z60

________________________
length of movement P1 - P2

pzone_eax

________________________
length of max linear ext. axis movement P1 - P2

zone_leax

________________________
angle of max reorientation of rotating ext. axis P1 - P2

zone_reax
RAPID reference part 2, Functions and data types A-Z 325



zonedata  
 Data type
Components

finep (fine point) Data type: bool

Defines whether the movement is to terminate as a stop point (fine point) or as a 
fly-by point.

- TRUE-> The movement terminates as a stop point. 
The remaining components in the zone data are not used.

- FALSE -> The movement terminates as a fly-by point.

pzone_tcp (path zone TCP) Data type: num

The size (the radius) of the TCP zone in mm.

The extended zone will be defined as the smallest relative size of the zone based upon 
the following components and the programmed motion.

pzone_ori (path zone orientation) Data type: num

The zone size (the radius) for the tool reorientation. The size is defined as the dis-
tance of the TCP from the programmed point in mm.

The size must be larger than the corresponding value for pzone_tcp.
If a lower value is specified, the size is automatically increased to make it the 
same as pzone_tcp.

pzone_eax (path zone external axes) Data type: num

The zone size (the radius) for external axes. The size is defined as the distance of 
the TCP from the programmed point in mm.

The size must be larger than the corresponding value for pzone_tcp.
If a lower value is specified, the size is automatically increased to make it the 
same as pzone_tcp.

zone_ori ( zone orientation) Data type: num

The zone size for the tool reorientation in degrees. If the robot is holding the work 
object, this means an angle of rotation for the work object.

zone_leax ( zone linear external axes) Data type: num

The zone size for linear external axes in mm. 

zone_reax ( zone rotational external axes)Data type: num

The zone size for rotating external axes in degrees.
326 RAPID reference part 2, Functions and data types A-Z



 zonedata
Data type  
Examples

VAR zonedata path := [ FALSE, 25, 40, 40, 10, 35, 5 ];

The zone data path is defined by means of the following characteristics:

- The zone size for the TCP path is 25 mm.
- The zone size for the tool reorientation is 40 mm (TCP movement).
- The zone size for external axes is 40 mm (TCP movement).

If the TCP is standing still, or there is a large reorientation, or there is a large 
external axis movement, with respect to the zone, the following apply instead:

- The zone size for the tool reorientation is 10 degrees.
- The zone size for linear external axes is 35 mm.
- The zone size for rotating external axes is 5 degrees.

path.pzone_tcp := 40;

The zone size for the TCP path is adjusted to 40 mm.

Predefined data

A number of zone data are already defined in the system module BASE. 
RAPID reference part 2, Functions and data types A-Z 327



zonedata  
 Data type
Stop points

Name
fine 0 mm

Fly-by points

TCP movementTool reorientation

Name TCP path OrientationExt. axisOrientationLinear axisRotating axis
z0 0.3 mm 0.3 mm 0.3 mm 0.03 o 0.3 mm 0.03 o
z1 1 mm 1 mm 1 mm 0.1 o 1 mm 0.1 o
z5 5 mm 8 mm 8 mm 0.8 o 8 mm 0.8 o
z10 10 mm 15 mm 15 mm 1.5 o 15 mm 1.5 o
z15 15 mm 23 mm 23 mm 2.3 o 23 mm 2.3 o
z20 20 mm 30 mm 30 mm 3.0 o 30 mm 3.0 o
z30 30 mm 45 mm 45 mm 4.5 o 45 mm 4.5 o
z40 40 mm 60 mm 60 mm 6.0 o 60 mm 6.0 o
z50 50 mm 75 mm 75 mm 7.5 o 75 mm 7.5 o
z60 60 mm 90 mm 90 mm 9.0 o 90 mm 9.0 o
z80 80 mm 120 mm 120 mm 12 o 120 mm 12 o
z100 100 mm 150 mm 150 mm 15 o 150 mm 15 o
z150 150 mm 225 mm 225 mm 23 o 225 mm 23 o
z200 200 mm 300 mm 300 mm 30 o 300 mm 30 o

Structure

< data object of zonedata >
< finep of bool >
< pzone_tcp of num >
< pzone_ori of num >
< pzone_eax of num >
< zone_ori of num >
< zone_leax of num >
< zone_reax of num >
328 RAPID reference part 2, Functions and data types A-Z



 zonedata
Data type  
Related information

Described in:
Positioning instructions RAPID Summary - Motion
Movements/Paths in general Motion and I/O Principles - Position-
ing during Program Execution 
Configuration of external axes User’s Guide - System Parameters
Other Stop points Data Types stoppointdata
RAPID reference part 2, Functions and data types A-Z 329



zonedata  
 Data type
330 RAPID reference part 2, Functions and data types A-Z



Index
A

Abs 1
absolute value 1
ACos 3
AOutput 5
arcus cosine 3
arcus sine 7
arcus tangent 9, 11
array

get size 63
ASin 7
ATan 9
ATan2 11

B

bit manipulation 199
bool 197
byte 199

C

C_MOTSET 295
C_PROGDISP 295
CDate 29
CJointT 17, 31
ClkRead 33
clock 201

read 33
confdata 203
corner path 283, 323
Cos 35
CPos 37
CRobT 21, 41
CTime 45
CTool 47
CWobj 49

D

date 29
DefDFrame 55
DefFrame 25, 59
digital output 69
Dim 63
dionum 211
displace

position 107
displacement

tool direction 145
displacement frame 55, 59
DotProd 67, 103, 193
DOutput 69

E

errdomain 213
ERRNO 295
errnum 215, 299
errtype 221
EulerZYX 71
Exp 73
exponential value 13, 73, 121
extjoint 223

F

file
read 125, 131, 135, 141
unload 65

fine 283, 323
fly-by point 283, 323
frame 59

G

GetNextSym 81
GetTime 85
GOutput 5, 87
group of I/O 5, 87

I

interrupt
identity 225

INTNO 295
intnum 225
iodev 195, 227
IsPers 91
IsSysId 93
IsVar 95

L

loaddata 231
loadsession 237
logical value 197

M

MaxRobSpeed 97
RAPID reference part 2, Functions and data types A-Z 331



mechanical unit 239
MechUnitLoad 297
mecunit 239
MirPos 99
mirroring 99
motsetdata 241

N

num 247
numeric value 247
NumToStr 105

O

o_jointtarget 249
object coordinate system 315
Offs 107
offset 107
operating mode

read 109
OpMode 109
opnum 255
orient 257
OrientZYX 111
ORobT 113

P

payload 231
pos 263
pose 265
PoseInv 115
PoseMult 117
Pow 121
Present 123
program displacement

remove from position 113

Q

quaternion 258

R

read
clock 33
current date 29
current joint angles 17, 31
current robot position 21, 41
current time 45, 85

current tool data 47
current work object 49
digital output 69
file 125, 131, 135, 141
group of outputs 5, 87
serial channel 125, 131, 135, 141

ReadBin 125
ReadMotor 129
ReadNum 131
ReadStr 135, 141
RelTool 11, 59, 109, 121, 145, 151
RobOS 147
robot position 251, 271
robtarget 251, 271
Round 149
RunMode 151
running mode

read 151

S

serial channel
read 125, 131, 135, 141

SetDataSearch 81
shapedata 275
signalai 277
signalao 277
signaldi 277
signaldo 277
signalgi 277
signalgo 277
Sin 153
speeddata 279
Sqrt 155
square root 155
stop point 283, 323
stopwatch 201
StrFind 157
string 291
StrLen 159
StrMap 161
StrMatch 163
StrMemb 165
StrOrder 167
StrPart 169
StrToByte 171
StrToVal 175
symnum 293
system data 295
332 RAPID reference part 2, Functions and data types A-Z



Index
T

Tan 177
TestDI 183
text string 291
TextTabFreeToUse 83
time 45, 85
tooldata 301
tpnum 307
trapdata 311
triggdata 309
Trunc 189
tunetype 313

U

UnLoad 65
user coordinate system 315

V

ValToStr 191
velocity 279

W

wobjdata 315
work object 315
wzstationary 319
wztemporary 321

Z

zonedata 283, 323
RAPID reference part 2, Functions and data types A-Z 333



334 RAPID reference part 2, Functions and data types A-Z





ABB Automation Technology Products AB
Robotics
SE-721 68 Västerås
SWEDEN
Telephone:   +46 (0) 21-34 40 00
Telefax:        +46 (0) 21-13 25 92


	RAPID reference manual part 2.pdf
	Abs - Gets the absolute value
	ACos - Calculates the arc cosine value
	AOutput - Reads the value of an analog output signal
	ASin - Calculates the arc sine value
	ATan - Calculates the arc tangent value
	ATan2 - Calculates the arc tangent2 value
	ByteToStr - Converts a byte to a string data
	CalcJointT - Calculates joint angles from robtarget
	CalcRobT - Calculates robtarget from jointtarget
	CalcRotAxisFrame - Calculate a rotational axis frame
	CDate - Reads the current date as a string
	CJointT - Reads the current joint angles
	ClkRead - Reads a clock used for timing
	Cos - Calculates the cosine value
	CPos - Reads the current position (pos) data
	CRobT - Reads the current position (robtarget) data
	CSpeedOverride - Reads the current override speed
	CTime - Reads the current time as a string
	CTool - Reads the current tool data
	CWObj - Reads the current work object data
	DefAccFrame - Define an accurate frame
	DefDFrame - Define a displacement frame
	DefFrame - Define a frame
	Dim - Obtains the size of an array
	Distance - Distance between two points
	DotProd - Dot product of two pos vectors
	DOutput - Reads the value of a digital output signal
	EulerZYX - Gets euler angles from orient
	Exp - Calculates the exponential value
	FileTime - Retrieve time information about a file
	GetNextMechUnit - Get name of mechanical units
	GetNextSym - Get next matching symbol
	GetTaskName - Gets the name of current task
	GetTime - Reads the current time as a numeric value
	GOutput - Reads the value of a group of digital output signals
	IsMechUnitActive - Is mechanical unit active
	IsPers - Is persistent
	IsSysId - Test system identity
	IsVar - Is variable
	MaxRobSpeed - Maximum robot speed
	MirPos - Mirroring of a position
	ModTime - Get time of load for a loaded module
	NOrient - Normalise orientation
	NumToStr - Converts numeric value to string
	Offs - Displaces a robot position
	OpMode - Read the operating mode
	OrientZYX - Builds an orient from euler angles
	ORobT - Removes a program displacement from a position
	PoseInv - Inverts the pose
	PoseMult - Multiplies pose data
	PoseVect - Applies a transformation to a vector
	Pow - Calculates the power of a value
	Present - Tests if an optional parameter is used
	ReadBin - Reads a byte from a file or serial channel
	ReadMotor - Reads the current motor angles
	ReadNum - Reads a number from a file or serial channel
	ReadStr - Reads a string from a file or serial channel
	ReadStrBin - Reads a string from a binary serial channel or file
	RelTool - Make a displacement relative to the tool
	RobOS - Check if execution is on RC or VC
	Round - Round is a numeric value
	RunMode - Read the running mode
	Sin - Calculates the sine value
	Sqrt - Calculates the square root value
	StrFind - Searches for a character in a string
	StrLen - Gets the string length
	StrMap - Maps a string
	StrMatch - Search for pattern in string
	StrMemb - Checks if a character belongs to a set
	StrOrder - Checks if strings are ordered
	StrPart - Finds a part of a string
	StrToByte - Converts a string to a byte data
	StrToVal - Converts a string to a value
	Tan - Calculates the tangent value
	TestAndSet - Test variable and set if unset
	TestDI - Tests if a digital input is set
	TestSignRead - Read test signal value
	Trunc - Truncates a numeric value
	ValToStr - Converts a value to a string
	VectMagn - Magnitude of a pos vector
	aiotrigg - Analog I/O trigger condition
	bool - Logical values
	byte - Decimal values 0 - 255
	clock - Time measurement
	confdata - Robot configuration data
	dionum - Digital values 0 - 1
	errdomain - Error domain
	errnum - Error number
	errtype - Error type
	extjoint - Position of external joints
	intnum - Interrupt identity
	iodev - Serial channels and files
	jointtarget - Joint position data
	loaddata - Load data
	loadsession - Program load session
	mecunit - Mechanical unit
	motsetdata - Motion settings data
	num - Numeric values (registers)
	o_jointtarget - Original joint position data
	o_robtarget - Original position data
	opnum - Comparison operator
	orient - Orientation
	pos - Positions (only X, Y and Z)
	pose - Coordinate transformations
	progdisp - Program displacement
	robjoint - Joint position of robot axes
	robtarget - Position data
	shapedata - World zone shape data
	signalxx - Digital and analog signals
	speeddata - Speed data
	stoppointdata - Stop point data
	string - Strings
	symnum - Symbolic number
	System Data
	taskid - Task identification
	testsignal - Test signal
	tooldata - Tool data
	tpnum - Teach pendant window number
	triggdata - Positioning events - trigg
	trapdata - Interrupt data for current TRAP
	tunetype - Servo tune type
	wobjdata - Work object data
	wzstationary - Stationary world zone data
	wztemporary - Temporary world zone data
	zonedata - Zone data
	A
	Abs 1
	absolute value 1
	ACos 3
	AOutput 5
	arcus cosine 3
	arcus sine 7
	arcus tangent 9, 11
	array
	get size 63

	ASin 7
	ATan 9
	ATan2 11

	B
	bit manipulation 199
	bool 197
	byte 199

	C
	C_MOTSET 295
	C_PROGDISP 295
	CDate 29
	CJointT 17, 31
	ClkRead 33
	clock 201
	read 33

	confdata 203
	corner path 283, 323
	Cos 35
	CPos 37
	CRobT 21, 41
	CTime 45
	CTool 47
	CWobj 49

	D
	date 29
	DefDFrame 55
	DefFrame 25, 59
	digital output 69
	Dim 63
	dionum 211
	displace
	position 107

	displacement
	tool direction 145

	displacement frame 55, 59
	DotProd 67, 103, 193
	DOutput 69

	E
	errdomain 213
	ERRNO 295
	errnum 215, 299
	errtype 221
	EulerZYX 71
	Exp 73
	exponential value 13, 73, 121
	extjoint 223

	F
	file
	read 125, 131, 135, 141
	unload 65

	fine 283, 323
	fly-by point 283, 323
	frame 59

	G
	GetNextSym 81
	GetTime 85
	GOutput 5, 87
	group of I/O 5, 87

	I
	interrupt
	identity 225

	INTNO 295
	intnum 225
	iodev 195, 227
	IsPers 91
	IsSysId 93
	IsVar 95

	L
	loaddata 231
	loadsession 237
	logical value 197

	M
	MaxRobSpeed 97
	mechanical unit 239
	MechUnitLoad 297
	mecunit 239
	MirPos 99
	mirroring 99
	motsetdata 241

	N
	num 247
	numeric value 247
	NumToStr 105

	O
	o_jointtarget 249
	object coordinate system 315
	Offs 107
	offset 107
	operating mode
	read 109

	OpMode 109
	opnum 255
	orient 257
	OrientZYX 111
	ORobT 113

	P
	payload 231
	pos 263
	pose 265
	PoseInv 115
	PoseMult 117
	Pow 121
	Present 123
	program displacement
	remove from position 113


	Q
	quaternion 258

	R
	read
	clock 33
	current date 29
	current joint angles 17, 31
	current robot position 21, 41
	current time 45, 85
	current tool data 47
	current work object 49
	digital output 69
	file 125, 131, 135, 141
	group of outputs 5, 87
	serial channel 125, 131, 135, 141

	ReadBin 125
	ReadMotor 129
	ReadNum 131
	ReadStr 135, 141
	RelTool 11, 59, 109, 121, 145, 151
	RobOS 147
	robot position 251, 271
	robtarget 251, 271
	Round 149
	RunMode 151
	running mode
	read 151


	S
	serial channel
	read 125, 131, 135, 141

	SetDataSearch 81
	shapedata 275
	signalai 277
	signalao 277
	signaldi 277
	signaldo 277
	signalgi 277
	signalgo 277
	Sin 153
	speeddata 279
	Sqrt 155
	square root 155
	stop point 283, 323
	stopwatch 201
	StrFind 157
	string 291
	StrLen 159
	StrMap 161
	StrMatch 163
	StrMemb 165
	StrOrder 167
	StrPart 169
	StrToByte 171
	StrToVal 175
	symnum 293
	system data 295

	T
	Tan 177
	TestDI 183
	text string 291
	TextTabFreeToUse 83
	time 45, 85
	tooldata 301
	tpnum 307
	trapdata 311
	triggdata 309
	Trunc 189
	tunetype 313

	U
	UnLoad 65
	user coordinate system 315

	V
	ValToStr 191
	velocity 279

	W
	wobjdata 315
	work object 315
	wzstationary 319
	wztemporary 321

	Z
	zonedata 283, 323



